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CHAIR POOLING TO MINIMIZE PREDICTION ERRORS IN SUBSET REGRESSION
by Arthur G, Holms

Lewis Research Center

SUMMARY

A technique called chain pooling had been developed for the analysis
of results of two-level fixed effects full or fractional factorial exper-
iments not having replication. The basic strategy includes the use of one
nominal level of significance for some preliminary tests and a second nom-
inal level of significance for the final tests. Strategies were identi-
fied having approximate optimality with respect to the probabilities of
Type 1 or Type 2 errors.

The subject has been reexamined from the point of view of wminimizing
prediction errors in the resulting subset regression equations. The in-~
vestigation consisted of Monte Carlo studies using population models hav-
ing geometries chosen to represent response surface applications, as moti-
vated by some research and development in structural materials optimiza-
tion. Parameter values were chosen to be unfavorable to the decision
procedures. Simulated experiments were generated by adding pseudo norm-
ally distributed random errors to population values to generate "observa-
tions." Model equations were fitted to the "observations'" and the deci-
sion procedures were used to delete terms. Comparison of values pre-
dicted by the reduced models with population values enabled the identi-
fication of a deletion strategy that is approximately optimal for minimiz-
ing prediction errors.

The results are proposed for any situation giving orthogonal esti-
mators of the model coefficients. They include the cases of orthogonal
designs of experiments and orthogonalizing transformations of terms of
the initial regression model.

INTRODUCTION

In the development of materials for aerospace applications, the ex-
perimentation is often expensive and time consuming. In seeking optimum
processing conditions or optimum compositions, the experimentation is
usually done with costly raw materials and elaborate processes. The tests
involved can include creep, stress rupture, fatigue, or other environ-
mental simulations and can be time consuming. Furthermore, the complexity
of the total fabrication and testing process permits the random cumulative
effect of important levels of experimental error. The efficient procedure
for mitigating the effects of such error, while minimizing the costs of
experimentation, has been to practice mathematical modeling of the data,
Modern methods for attempting to fit the most appropriate predictive equa-
tion to such data are referred to as methods of subset regression, Prac-




tical uses of such techniques in materials development have been described
in Collins, Quigg, and Dreshfield (1968), Eckert and Serafini {1968),
Sandrock and Holms (1969), Eiselstein (1971), and Filippi (1974). Such
techniques have been made feasible by the advent of large scale computers.

Many differing statistical decision procedures have been incorpor-
ated into the computer programs that are used to pursue the objectives of
subset regression. Some of them have been described by Draper and Smith
(1966} and criteria for their optimality have been discussed by Hocking
(1972).

Two reasons for the plethora of methods are:

1. There is no unique and widely accepted criterion for judging
which of two proposed statistical procedures is the better.

2, If a unique criterion is adopted for use in measuring the good-
ness of a subset regression procedure, the analytical problem becomes
mathematically intractable if the object is to devise a procedure of wide
applicability that will satisfy the criterion. This results in many spe-
cial solutions of special cases.

In the present investigation, the inhibitions of mathematieal trac-
tability were thrown off by using Monte Carlo simulations. The method of
subset regression that was investigated was essentially the method of
chain pooling described by Holms and Berrettoni (196%9). Whereas the
method had been investigated to minimize probabilities of Type 1 or
Type 2 errors, the present investigation looks for strategies that mini-
mize the maximum prediction errors. The results are offered as being
generally useful because of the general applicability of the underlying
assumptions. The assumptions are as follows:

1. The model to be fitted is linear in the unknown parameters.

2. The errors of the observations are independently normally distrib-
uted random variables with a zero mean and a constant variance.

3. Orthogonal estimators are available for estimating the unknown
parameters of the linear model. (This orthogonality can be the result of
the design of the experiment that furnished the observations, or it can
be the result of an orthogonalizing transformation of the terms of the
equation.)

4, The appropriate criterion of the goodness of a subset regression
procedure is the smallness of the largest of the prediction error mean

squares over the points of the experiment for which the experimentor de-
sires to make predictions.

5. There is no replication available for an estimate of the 'pure"
error variance,



The first four of the five preceding assumptions are fundamental to the
rationale of the method; however, data will be cited for believing that
the method is robust against the normality part of the second assumption.
The fifth assumption merely acknowledges the possibility that an alto-

gether different method might be preferred in the presence of pure repli-
cation.

The original investigation of chain pooling had been concerned with
three sizes of experiments, namely, experiments furnishing 16, 32, or 64
observations (Holms and Berrettoni (1967)). The simulations had shown
drastically reduced decision error probabilities, or the equlvalent,
greatly improved information efficiencies, for the larper experiments.
Such results suggest that the method of analysis is relatively less crit-
ical for the larger experiments, and the methods described (Holms and
Berrettoni (1967)) are therefore believed to be adequate for producing
small prediction errors with experiments providing 32 or more observa-
tions,

For relatively saturated experiments that are smaller than sixteen
observations, the opinion is offered that such experiments are too small
to provide both (1) good estimates of model coefficients and (2) a good
test statistic, in cases where random errors are large enough to call for
a statistical decision procedure. In other words, experiments with less
than Sixteen observations should be fitted with models of a fixed size
with no use of conditional modeling.

Consistent with the preceding remarks, the simulations of the pres-
ent investigation were all performed with experiments containing sixteen
observations in the belief that such experiments are large enough to
justify the use of a statistical decision procedure, but small enough
so that the precise optimization of the decision procedure would be quite
benefiecial,

Whete m, is the number of estimable terms deleted before the deci-
sion procedure begins (or equivalently, the residual degrees of freedom),
where ap is the nominal size of the preliminary tests, and where af
is the nominal size of the fimal tests, the parameters of the chain pool-
ing strategy are the quantities Mp, Ops and of. Results of the inves-
tigation are presented as recommended values of My, Ops and af.

The results thus provide an improved methed for the mathematical
modeling of the small, expensive, hard to control experiments that are
typical of empirical research and development in materials optimization,
The improvement lies in the fact that the statistical decision procedure
is optimized to minimize prediction errors, thus maximizing the accuracy
with which optimum materials compositions and processes can be identified,



EXISTING THEORY OF SUBSET REGRESSION
Optimality Criteria

The underlying population model for the system being investigated
is assumed to be of unknown form and to contain an unknwon number of
population parameters. What is known 1is that there 1s a set of variables
uj, « . -» Uy whose values can be measured or controlled within a negli-
gible amount of error. Another variable, called the dependent variable
is assumed to be observable and to contain a random component called
error where the error is independently normally distributed with mean
zero and constant variance, In an abstract form, the model equation for
the dependent variable is written

Y = u(ul, v ey ug) + e (1)
where Y is the dependent variable, up;, . . ., u are the independent

variables, y 1is the unknown function, and e 1is the error,

The next step of the procedure is to approximate the unknown func-
tion by a polynomial in the independent variables, which will be linear
in a set of parameters to be estimated. The parameters will be estimated
by fitting some version of the polynomial to a collection of data con~
sisting of t matched sets of observations of y and wu;, . . ., ug.
Whether or not the data was collected from any controlled activity, the
data set will be called an experiment, and the sets of values of
Uiy » s ey Ug will be called treatments.

In the absence of pathological cases, the availability of the t
matched sets of observations allows the fitting of a polynomial contain-
ing t unknown parameters. Thus, conceptually, an approximation to (1)
is written

Y = Ylfl(ul, . e s ug) + .. .+ ytft(ul, s ey ug) + e (2)

The assumption is now introduced that through prior knowledge, or
through knowledge of the structure of the experiment, the functions fj
{u3, . . ., u,) are all established. With these fi (u;, . . ., ug)
being known functions, let

® = £,(u, 0, ug) (3)

and let

Equation (2) is now written

Y = Yy + Yo%y + .. .+ Yo%, + e (4)



In the preceding equations, the coordinates uj, . . ., ug are
properly called independent variables, but because the xj are functions
of the wuj, . . ., ugy, the x4 are not mathematically independent of
each other. Their special role is often identified by calling them re-
gressor variables, or simply, regressors. ‘

Suppose equation (4) is modified by retaining only r terms beyond
the constant term (not necessarily the first r terms). With 1l <r <t
and with appropriate changes of subscripts, equation (4) 1s now written

Y= By kBpx  + .. . FBX te (5)

The usual procedure is to find estimates of the 8; by the method of
least squares. Assume that this has been done and that the estimates are
bj. The resulting predictive equation is

~

= b0 + blxl + . ..+ brxr (6
For any point wuj, . . ., ug the associated =xj can be determined and
the prediction error e, is

e = Y - u(ul, e e ey ug) (7

The mean squared prediction error can be expressed as the sum of a vari-
ance and a squared bias. Where B("), E(*), and V(') are the bias, ex-
pectation, and variance of (), respectively, the mean squared error of

prediection is:

E[Y - E(¥) + E(¥) - u1?

]

E(e%)

E[Y - B(D)12 + 2B{1Y - EDIE®) - u]} + [E@D - u]?

V() + B2(Y) (8)

As is well recognized, increasing r can usually be done to reduce
BZ(¥). As was pointed out explicitly by Walls and Weeks (1969) such in-
creases in r are usually accompanied by increases in V(Y). Selecting
r and the r terms to be retained is the central problem in subset re—
gression; however, not all authors have chosen the minimization of E(ep)
as the objective of thelr procedures.

Three popular methods of subset regression are known as (a) forward -
selection, (b) sequential deletion, and (c) stepwise regression. Some
"discussion of the three methods was given by Draper and Smith (1966).
Many discussions of the relative merits of differing methods of subset
regression have dealt with finding the best subset of terms for a fixed
number of terms [Beale {(1970)]. This seems to be an incomplete formula-



tion of the problem. The question should be: '"What is the best subset
of terms?" with no prior specification of the number of terms in the
subset.

Many of the subset regression procedures in common use do not en-
vision the retention of a fixed number of terms, but instead allow the
number retained to be determined by a statistical decision procedure.

This point of view is incorporated into the procedures described by
Efroymson in the publication by Ralston and Wilf (1960), by Sidik (1972a),
by Holms and Berretoni (1969), and by the works of many other authors as
summarized by Draper and Smith (1966). These procedures all use tests of
significance, presumably in an attempt to control some combination of the
probabilities of the Type 1 and Type 2 errors.

If the model selection uses tests of significance applied to the co-
efficients of a fitted equation, the question arises as to what form of a
loss function is appropriate to the statistical decision procedure. The
methods of classical statistics often give procedures whereby an arbitrary
limit may be established to control the probability of Type 1 or Type 2
errors. On the other hand, real 1ife problems seldom provide the informa-
tion for a rational quantitative specification of such particular proba-
bility levels of decision errors. In many cases a reasonable objective
is that of minimizing some function of the mean square error of predic-
tion [as defined by eq. (8)]. 1In such cases a statistical decision pro-
cedure might operate in the guise of significance tests, but its ultimate
objective would be the minimizing of prediction errors, rather than the
control or probabilities of Type 1 errors.

Small Experiments

The problem under consideration is that of fitting a model equation
to an experiment that resulted in a small number of observations. Con-
sistent with the smallness of the experiment, the assumption is also made
that it contains no pure replication, so that t tests or other well
established procedures are not obviously wvalid or applicable.

Allen (1971) referred to literature that used the residual sum of
squares as a criterion for choosing regressors. He pointed out that
there are at least two objections to using such a criterion:

1. If the residual sum of squares were the only criterion, then all

of the regressors would be used and there would be no motivation for sub-
set regression.

2. The residual sum of squares is not directly related to the '"nat-
ural"™ loss function which is the mean square error of prediction.

On the other hand, the methods of Allen obtain a criterion called
PRESS by predicting each observation from all the other observations,
The present investigation is concerned with small saturated experiments



where each observation is more or less crucial to the estimation proce-
dure, particularly for predictions at the set of regressor values corre-
sponding to a given observation. The PRESS criterion is therefore be-
lieved to be inappropriate to subset regression for small saturated ex-
periments.

Nonlinear Models

in the fitting of equations to data, a large body of knowledge has

been developed for the fitting of linear models. The fitting of nonlinear
models is a subject of current research outside the scope of the present
investigation. (The initial use of a nonlinear model is presumably dic-
tated by prior knowledge and such prior knowledge might dictate the use

of a different model selection procedure.) The restriction to linear
‘models is no great handicap in fitting to data over sufficiently small
domains because nenlinearity of the response function can be approximated
by fitting a linear combination of power functions of the independent
variables.

Colinearities

The coefficients of equation (4) are usually estimated by the method
of least squares which gives unbiased coefficient estimates. For any of
several reasons, the data amalyst may wish to set some of the coefficients
equal to zero, or he may wish to adjust their values as a result of cer-
tain defielencies in the experiment.

The existence of correlations or colinearities among the regressors
constitutes a potential danger in the estimation of the parameters of
equation (4). Such a situation in combination with errors in the y-values
can resylt in estimates of the 7y; having excessively large absolute
values. A direct treatment of this symptom is to use methods that produce
biased estimates, as in the methods of Ridpe Analysis discussed by Hoerl
and Kennard (1970), and also by Marquardt (1970). The methods of blased
estimation have the obvious disadvantage that they provide no specific
procedure for the discarding or selection of terms in equation (4). They
have other disadvantages as illustrated by the simulations that were per-
formed by Newhouse and Oman (1971). Furthermere, when backward elimina-
tion is used in subset regression, the experience is usually that each
successive elimination results in smaller absolute values for the coeffi-
cients that remain. This suggests that the objectives of these biased
estimation procedures might also be attained by the use of a good subset
regression procedure. '

Special Techniques

Suppose that an experiment has been per formed giving observations



of the dependent and associated independent variables, under the circum-
stance that the error in y is independently normally distributed with
mean zero and constant variance g2 and that there are multicolineari-
ties among the independent variables. One approach to such a problem is
exemplified by the book by Daniel and Wood (1971) and consists of a mix-
ture of much plotting and tentative model fitting with occasional uses of
Mallow's (1973) Cy—statistic all blended with generous infusions of the
experimentor's prior knowledge in an ad hoc manner for the particular set
of data.

CHATN POOLING COUPLED WITH PRINCIPAL COMPONENTS REGRESSION

The true form of the population model and the value of the error var-
iance are assumed to be uynknown. The best procedure is deemed to consist
of estimating the parameters of a linear model containing as many param-
eters as there are observations. An appropriate procedure is to be used
to set some of the parameter estimates to zero.

Two procedures available for setting parameter estimates to zZero
are Half-Normal Plotting (Daniel, 1959) and Chain Pooling (Holms and
Berrettoni, 1969). Similarities and differences between Half-Normal
Plotting and Chain Pooling will be discussed. Both of these methods re-
quire single degree of freedom orthogonal estimates of model parameters.
Such estimates are ordinarily provided by the results of two-level full
and fractional factorial experimentd without replication. The possi-
bility of extending such methods to cases of correlated estimates through
orthogonalizing transformations ('principal components regression') will
be discussed,

Comparison of Half-Normal Plotting with Chain Pooling

In Half-Normal Plotting, the absodlute magnitudes of the coefficient
estimates are plotted in an ordered manner on probability paper. All
data interpretations are therefore dependent on the observed ordering,
rather than on a prior ordering. Chain Pooling is similarly based on the
observed ordering. It uses a sequence of dependent tests of hypotheses
where each test is referred to the distribution function of the largest
of a set of chi-square variates.

Conditional model building is just one of the objectives of Half-
Normal Plotting. Other objectives include the detection of nonuniform
error variance and other departures from the usual assumptions. By com-
parison, the objective of Chain Pooling is only that of conditional model
selection, but it attempts to achieve its objective in a manner that has
been established as being approximately optimal by combining a few
rational considerations with a huge amount of Monte Carlo simulations.



Procedure Based on Prior Ordering

Chain pooling uses a succession of tests of sipnificance. Another
procedure using a succession of tests of significance was proposed by
Kennedy and Bancroft (1971). In contrast to the methods of Half-Normal
Plotting and Chain Pooling, they use a prior specified order for the
tests of significance.

Deletion Under the F-Test

Subset regression procedures often proceed as follows: A multi-
dimensional polynomial is fitted to the available data, If there are g
independent variables and t observations, a polynomial, truncated at t
terms 1s written having the form:

fﬁ\ HE\ mé\ rﬁ\ Ji\ 23
Y =8, + x, + ] . T \
"o Iy ST By Y B 311%™
i=1 i=1 341 i=1 j=1 k=1
+e+4+ ...+ similar terms up to degree d (9)

Thus far, the assumption is that' a polynomial with t terms is to
be fitted to t observations. Assume instead that r terms beyond By
are fitted, with r + 1 <t leaving

myo = t - (r+1) ™0 >0 _(10)
‘degrees of freedom for the residual sum of squares. In this case myg
will be called the initial degrees of freedom for error,.

Let Sppp be the initial residual sum of squares with myp degrees
of freedom. Assuming that the residual sum of squares is due only to
error (that is, assuming zero lack of fit), the quantity Smpolc2 is a
central chi-square variable with myp degrees of freedom. Assume that
among the t terms in the initial model, one or more have zero popula-
tion coefficients, and assume that one of these terms, namely the ith
one, is selected at random, is deleted from the model, and is pooled with
the residual. Then the degrees of freedom for the residual is increased
by one. ' Let the new residual sum of squares be Spp i. Under the pre-
ceding assumptions the ratio

S . - 5 1
F = ( mp’l mp,O)/

Sup, 0/ M50

(11)

has the F-distribution with 1 and m,0 degrees of freedom.

If only one test were to be performed, equation (11) could provide
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an s-level test of the null hypothesis Bi = 0 against the alternative
hypothesis 85 # 0. The eritical region would be the region for which

the test statistic exceeds the (1 - d) point of the cumulative distribu-
tion function of F with 1 and 50 degrees of freedom. If subsequent
tests are to be performed, the question arises as to whether their sensi-
tivity can be improved by increasing the degrees freedom of the denomi-
nator through the pooling of mean squares into the denominator correspond-
ing to coefficients that had previously tested as nonsignificant. Such a
practice would invalidate the a-level of the F-test,

The Largest of a Set of Chi-Square Variates

Assume now that j - 1 terms have been deleted from the model that
originally contained t terms, and that R;_7 1s the residual sum of
squares corresponding to the j - 1 terms, and that all of these terms
actually represented population parameters with zero values. Let
Zi; Dbe the decrease in the regression sum of squares resulting from de-
leting the ith term from the regression equation, and let Zj; be added
to Rs;_7 to form the new residual sum of squares. Assume that all of
the déleted parameter estimates were independently chosen and orthogonal.
If the parameter coefficient of the ith term were zero, the sum Zij + Ri-1
would then be the sum of j independent single degree of freedom centra
chi-square variates. Furthermere, assume that Zjj is the largest of
these chi-square variates. Let

C., = Z../(R; + Z. 2
= 2y Ry + 2 (12)
Then C: has "Cochran's" distribution as described by Cochran (1941).

An uppet critical point of Cj thus provides a critical region for a
test of the hypothesis

Multiplication of C; by j gives the Uy distribution tabulated by
Holms and Berrettoni™ (1967).

Chain Poeling
Consider a sequential deletion procedure that operates as follows:
The residual sum of squares has degrees of freedom. A hypothesis
test is performed against the U; " distribution where j -1 = and
Zy 1is the smallest, over all terms in the model, of the decrease, Zij,

in the regression sum of squares on deletion of the ith term.

Form the statistie

Wyo= a2y Ry +29) (13)
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Because of the violations of the assumptions of Cochran's distribution-
that are introduced by this procedure, Z; + Ri_1 will not in general be
the sum of j random variables independently drawn from a single ¢x2(1)
distribution with Z4 being the largest among them. As a matter of
fact, in typical regression problems, an arbitrary inicial residual with
TpQ degrees of freedom might be large enough so that with j -1 = M50

By-1/Pp0 7 %5

On the other hand, as the sequential deletion procedure continues,
by inecreasing j one unit at a time with each 2343 2 Zj, the statistic
W: should become an increasingly better approximation to Uj. Accord-
ingly, the sequential deletion procedure will use the upper 1 - o per-
cent points of the U; distribution as the critical values of a decision
procedure based on the statistic W;. Furthermore, the sequential dele~
tion procedure will use the conditidnal peoling of the "chain pooling"
strategy of Holms and Berrettoni (1969) with components (mpo,ap, and ag).
In this strategy, myg is the number of degrees of freedom in the initial
residual. The decision procedure then consists of sequential compound
hypothesis testing. The procedure begins using the W; statistic at
‘gignificance level a,. As long as Z tests nonsignificant at level
%ps it is pooled into the Rj—l component of the denominator of Wj in
preparation for the next test in the sequential deletion procedure,

With the first Zj testing significant at level p testing at level

o and the pooling of mean squares into the denominator ceases, and
testing at level oy begins., Suppose at this point that j = jp. At
this point, Rj-1 is no longer augmented with values of Z; that are not
significant at level o, Furthermore, the critical value of U; re-
mains fixed at its wvalue for j = ] and testing of the Z; coltinues
until some Z tests as significant at level ag. Suppose this occurs
at jg. Then the associated regression coefficient is retained in the
fitted equation and the decision procedure (sequential deletion) termi-
nates. Within the strategy (myg, Oy ag) , the consideration of oaf > o
is unreasonable, and so the values of @, and og, for which TU; has
been tabulated and that are to be investigated, are as listed in table XI.

The use of the U; statistic is based on the assumption that the
random observation error is independently normally distributed. As was
shown by Holms and Berrettoni (1967) the operating characteristics of the
chain pooling procedure remain essentially unaffected for an error with
the same mean and variance but with a rectangular distribution. This re~,
sult is not surprising in view of the fact that the coefficient estimates
are always a sum of 28-h  observations, for which approximate normality
can be expected, according to the central limit theorem. In other words
the chain pooling is regarded as being generally robust with respect to
the assumption of normality.
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Principal Components Regression and Model Deletion

The possibility of extending a chain-type decision procedure to cor-
related estimates was suyggested by Kennedy and Bancroft (1971) wherein
they would apply orthogonalizing transformations to the original regres-
sors. The use of orthogonalizing transformations in regression analysis
had been suggested under the name of principal components regression by
Kendall (1957). Further discussion of principal components and subset
regression was provided by Massy (1965). The implications of combining
principal components with chain pooling will be discussed in this section.
Some insights inte these matters are provided by numbers called the char-
acteristic roots or the eigenvalues of the orthogonalizing transforma-
tions. The roles they play will be more fully discussed in a subsequent
section. It deals with the transformations back to the original regres-
sors that follow after a subset regression has been performed on the
orthogonalized regressors.

In the method of principal components, the regressors of equation (4)
are transformed to an orthogonal set and associated eigenvalues (charac-—
teristiec roots) wy, . . ., wy are also computed. Where the coordinates
along the eigen vectors are wy, the fitted equation is :

~ ~ ~ A

Y = Ay F oWy +oopw, tLoL L % Ve g (14)

The regression sum of squares is thereby partitioned into a set of mean
squares {M5;) associated with the coefficient estimates and eigenvalues
as follows (p. 70, Kendall (1957)):

~2
MSi = w0y (15)

where wy 1s the characteristic root associated with Wi

In the procedure of Holms and Berrettoni (1969), where i 1is the
population coefficient of the ith terp

2 2
E(Msi) =g~ + tay

and 1f Ay 1is the noncentrality parameter for M54, then

252 _ 2 2 _ 2
A o= tai/c P EQMS;) = of + 4 0% = (1 + )0
and from equation {153)
"2, 2
E(wiai) = (1 + Ai)c

In his illustrative example, Kendall (1957) dealt with a situation
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where two of the w; were small and where the corresponding MS; were
small. His discussion did not answer the question of what one would con-
clude or do if, for example, w; were small and wg were large, while
MS, were large and MSy; were small. An approach to this question was
provided by Massy (1965) who differentiated between two circumstances as
follows:

"a, Delete the components that are relatively unimportant as pre-
dictors of the original independent variables (X) in the problem;
i.e., the components having the smallest eigen vectors should be
dropped."

or

"b, Delete the components that are relatively unimportant as pre-
dictors of the dependent variable (Y) in the problem. In this case
the components having the smallest values of gamma (the correlation
between the components and Y) should be dropped,"

The objective of the present investigation is to minimize errors of
prediction, correspondingly the point of view is not necessarily either

one of Massy's (1965) criteria "a" or '"b."

The predictive error of the equation resulting from a subset regres-
sion procedure depends upon both bias error and variance error. The re-
jection of too many terms causes excessive bias error, and the retention
of too many terms can cause excessive variance error. The subset regres-
sion procedure is to be optimized by minimizing the predietion error.

But by the orthogonalizing process, the total variance of the observed
dependent variable 1s partitioned into a set of independent mean squares
and the smaller of these mean squares represent contributions to the var-
iance error while their associated terms in the orthogonalized regression
equation do little to reduce the bias error. Thus a procedure such as
chain pooling, which rejects terms corresponding to the smaller mean
squares, could be ideal for providing a subset repgression procedure that
would minimize the predictive error.

The basic concept of chain pooling is that beyond the &0 of (14),
the coefficient estimates have been ordered in the decreasing order of
their associated mean squares and that n of the estimates associated
with the n smallest mean squares should be set equal to zero, while »p
of them are retained. Thus n and p are regarded as unknown integer
parameters where.

p+n+l=r¢t (16)
The model equation is

Y = uo + ulwl + . . . taow + g

o¥o D_,_le+1 + .. .+ ap+nwo+n (17
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The method of chain pooling coacerned the hypothesis

H :o

a D+l = [4'3 - N . - = O -— O

p+2

where n was to be estimated in some manner that would minimize some
combination of weighted averages of the Type 1 and Type 2 error proba-
bilities for the decisions «; = 0. This optimal estimate of n was to
be achieved using a decision strategy (mp, o af} where the parameters

of the strategy are as defined by Helms and Eerrettoni (1969) .

The point of view of the present investigation is that the basic
chain pooling approach should be retained but that the components (mp,
aps ag) of the strategy should be optimized for another criterion, namely
to minimize the expected prediction error, that is, r = p should be
chosen to give a prediction equation

Y = % + Gy + ayw, + oL Lt @ W (18)

such that E(Y - u(W))2 is minimized for some appropriately chosen value
of W where W 1is a vector of values of the orthogonal regressors but
not necessarily a vector of values for which the experiment was performed.
Instead, W should be chosen according to the domain of intended applica-
tion of the fitted model.

When equation (18) has been transformed back into the cocordinates of
equation (4), the property of minimum prediction error achieved for Y
is speculated to be retained. This speculation is based on a theorem
that was proven by Kennedy and Bancroft (1971) for a decision procedure
that has some similarities to chain pooling. Their analysis was con-
cerned with a prior established order of significance testing and there
is no direct comnection between their distributional theory and the
theory for chain pooling. What they showed was that the variance error
and bias, and hence the mean square prediction error of their reduced
models, is invariant under an orthogonal transformation of the regressor
variables,

Transformations Back to Original Regressors

The subject of principal components analysis had been developed with
a view to its application to situations in multivariate analysis where
all the variables are regarded as random variables. Such a development
was given by Kendall and Stuart (1966), Vol. 3, pages 285-289. The pres-
ent discussion of regression analysis deals with situations where the in-
dependent variables are observed or controlled with negligible error.
Nevertheless the actual values given to the independent variables may be
looked upon as random variates and thus for any given experiment, many
aspects of the spatial distribution of the points of the regressor vari-

ables may be studied from the point of view of principal components
analysis.
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A valuable set of numbers characterizing the spatial distribution of
the points of the experiment is the set of eigenvalues associated with
the transformation of the original regressors to an orthogonal set. The
relative magnitudes of these eigenvalues are measures of how widely spread
the experimental points are in the directions of the eigen vectors. Thus
a severe multicolinearity in the original variables is a consequence of
the spatial distribution of the points being concentrated near a multi-
dimensional plane, One of the new coordinates will be normal to this
plane and its associated eigenvalue will be very small (Kendall and
Stuart (1966)).

Some insight into the implications of the eigenvalues can be gained
from figure 1, which compares two situations with differing eigenvalues.
The true (but unknown) values of the dependent variable are assumed to be
given (as a function of the regressor variables x; and =x3) by the
dashed contour lines. A strong colinearity between x; and x7 Iis
illustrated by the distribution of the points of figure 1(a) which after
transformation to principal components would be evidenced by a small
value of wp. Setting wy = 0 imposes the subsidiary condition of
X1 = X9 and this is a mathematical statement of the fact that the space
of the x4 was not well spanned by the experiment. The prediction equa-
tion can be either

=
]

bO + blxl

ar

Y

i

b0 + b_lx2

but the uses of the equation must be restricted to values of x; and Xy
such that g

¥ FX

In figure 1(b) , neither w; mnor w2 are small, however, the true popu-
lation is such that MSp (and therefore 32) is not significant. Because
of the insignificance, the predictive equation in the principal components
is

Y = a, + a vy
however, the pradictive equation in the original coordinates contains
both of them:

Y = b0 + bl(xl + xz)

because the values of w; and wy; have now shown that the space of the
xj is well spanned by the experiment. Also, this fact and the insignifi-
cance of MSo, has shown that ¥ does not vary with wy, namely Y is a
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constant on any line for which x; + %X, 1s a constant. The preceding

discussion illustrates a typical usage of the combination of principal

components analysis with subset regression analysis, One situation re-
sulted in the two equivalent equations.

~

¥=58yt 3

1%

or

553
il
T
+
oy

~whereas the other situation resulted in the model

where the values of the eigenvalues were crucial to the selection and

usage of the final form of the model in the original regressors.

The general situation now appears to be as follows. If the avail-
able experiment has colinearities in the original regressor variables
and does not furnish orthogonal estimates of the model parameters, the
methods of principal components can be used to provide orthogonal regres-
sors that will furnish uncorrelated estimates of the coefficients of the
orthogonal regressors., This process will furnish a set of eigenvalues
for the matrix product of the transpose and the design matrix of the
original regressors. The relative magnitudes of these eigenvalues now
present information as to how badly the original regressors are corre-
lated, or equivalently as to how badly ill-conditioned is the matrix
whose inversion would ordinarily be attempted, These eigenvalues are to
be judged from the standpoint of numerical analysis or computer round-off
errors or similar disciplines. The eigenvalues cannot be made the sub-
ject of a statistical decision procedure,

The elements which are made the subject of the chain pooling statis-
tical decision procedure are the MS; that are associated with the
orthogonalized regressors, The deletions are therefore in the order of
the smallness of the MS; which from equation (15) are due either to a
small wy; (as illustrated by fig. 1(a)) or to a small ﬁi (as illustrated
by fig. 1(b}) or to both. The distinctions among these cases are vital
to the construction of a final model in the original coordinates. A small
value of MS{ accompanied by a small value of w; implies that the co-
ordinate w; should be set equal to zero and setting that eigen vector
equal to zero imposes a single degree of freedom constraint on the space
of the original regressors implying that predictions are valid only for
combinations of the original regressors such that w; = 0. On the other
hand, a small MS;{ accompanied by a large wy would imply that aj 1is
small and that the dependent variable is essentially constant along lines
in the space of the original regressors for which all the orthogonalized
regressors except w; are constants. In this case the term with coeffi-
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cient o3 would be deleted from equation (14), and correspondingly, the
original model would be limited to one less parameter, but it could con-
tain all of the original regressors.

The preceding discussion has been given in terms of linear trans-
formations between the x; and the wj. If the transformation between
the wu; and the x; (eq. (3)) are also linear, the steps in the applica-
tion of principal components regression are as already described. If on
the other hand, the f; of equation (2) are nonlinear in the wuj, the
consequences for the u; of setting some of the w; of equation (14)
equal to zero would deserve special attention.

CHOICE OF TRUE (POPULATION) MODEL FOR SIMULATIORS
Simulation Type Investigations

Optimality of model selection procedures is to be investigated. Aan
analytical investigation could provide answers in general terms. Because
of the complexity of the underlying statistical procedures, an analytical
investigation will not be attempted. Instead, the investigation will be
conducted by the performance of Monte Carle simulations of experiments.
Such empirical investigaticns have the risks that the conclusion might
have severely restricted ranges of applicability. 1In discussions to fol-
low, the rationale will be given for the choice of the designs of the ex-
periments and for the cholice of simulated population models so that the
conclusions will have wide ranges of usefulness.

The statistical decision procedure can be viewed as a game played
between mature and the statistician. The statistician's strategy is his
model selection procedure and he seeks to minimize the prediction error.
The strategy he should use is to be found by trial and error using com-
puter simulations. Nature's strategy must be bullt into the simulations.

. This can be done to represent nature as an indifferent opponent in which
case the empirically optimized strategy will have a sort of Baves opti-
mality. The simulations could otherwise be done to represent nature as
an aggressive oppenent who would choose the worst possible population
model against the statistician's best possible procedure, Under these
conditions the statistician’s empirically optimized procedure could be
called a security strategy as defined by Luce and Raiffa (1957).

Unfavorable Population Models

In an empirical study of decision procedures for model selection in
the absence of pure replication (Holms and Berrettoni (1969)) the concern
was not with prediction errors resulting from the choice of model equa-
tion, but instead was confined to the count of decision errors in accept-
ing or rejecting terms. That investigation of decision procedures was
given a security quality by optimizing the recommended procedure against
an "unfavorable distribution" of the parameters (regression coefficients).
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Oon the other hand, if the procedure is to be optimized with respect
to prediction errors in a manner that is also a security strategy, two
"unfavorable" conditions should be introduced, namely, (1) the distribu-
tion of the values of the parameters should be unfavorable to the deci-
sion procedure, and {2) the true shape of the function to be fitted
should be unfavorable with respect to what would constitute a popular or
reasonable form of the initial polynomial model. Thus the criterion ad-
vanced here is not that the fitting and selection procedure should merely
find good estimates of the true parameters of an unknown finite poly-
nomial, but rather that the fitting and selection procedure should find a
good predictive equation even if the umknown function is one that cannot
be represented exactly by a finite polynomial.

If the true shape of the function to be fitted is particularly un-
favorable to the model selection procedure, then the empirically opti-
mized procedure will have an approximate security optimality. But
another type of optimality could be of interest. The simulations could
be performed with the true shape of the funetion to be fitted being a
type that is most likely to be encountered in practice. Then if the pro-
cedure were empirically optimized to minimize mean square errors of pre-
diction for such a function, the resulting procedure could be labeled as
an approximate maximum likelihood optimal procedure. To keep the inves~-
tigation to a manageable size, and still keep it highly applicable to
real life situations, conditions of the investigation will be chosen that
will optimize the decision procedures against a blending of the two
points of view just expressed, as follows: (1) To simulate the type of
function expected to be met in practice (particularly in the practice of
empirical optimum seeking) it will be an "inclined bell-shaped mountain”
in several variables., Differing combinations of slope and "peakedness™
can then represent the differing situations that might occur, for example,
in optimum seeking experiments that begin with the method of steepest
ascents and then, depending on the observed topology, go to the method of
local exploration. To the extent that such a "bell-shaped mountain' is
typical, this aspect of the investigation will result in decision proce-
dures that have a maximum likelihood quality. The model that will be
fitted to the results of an experiment will be a polynomial in sewveral
variables with a finite number of terms. The true function is unfavor-
able with respect te such a model because the true model is a transcen-
dental function, so that an exact polynomial representation would require
an infinite series of terms. Of course, in any one simulation, a poly-
nowmial model containing t terms could be fitted exactly to the t ob-
servations associated with t treatments, however, the simulation will
add a random error component to the observed values of the function, so
that the fitted polynomial will usually fail to predict the true function
values at the coordinates of the treatments. (2} In such a situation
(with the model containing a number of terms equal to the number of treat-
ments) some of the terms might be almost wholly error and thus add to the
errors of prediction. Therefore a model selection procedure that rejects
terms judged to be insignificant could operate to reduce the errors of
prediction. The effectiveness of such a rejection procedure will be se-
verely tested by giving the parameters values that, relative to each
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other, are unfavorable to the rejection procedure. This will be done in a
manner to be described under the heading of '"Choice of Population Parameter
Values Unfavorable to the Decision Procedure.”

Functional Form of Population Model

The population model can be given the form of a bell-shaped mountain
through an adaptation of the multivariate normal density function for g
independent normal random variables. Such a function is given by

1 (xk-uk)z
, g g':" - ‘f Gk
-1 1 =1
e [NES as)
k=1

where 1y, is the population mean of %, and O is the standard devia-
tion of x;. On any one coordinate, the function has a maximum at

X, = g and it has points of inflection at =X = py % Ol » The coordi-
nates of the treatments consist of combinations of plus and minus ones.
The population model will be made asymmetrical with respect to any plan of

an experiment by locating its point of symmetry at one of the possible
treatment points.

The true {(population) model will be a "multidimensional inclined
bell-shaped mountain' because it will be given a functional form as
follows:

- -

g
N -5 9
5, AR
-, ) k=1 '
Miam = Oyttt R T T l (20)
[ |
k=1 |
The parameters of equation (20) have purposes as follows:
Wyom dependent variable, function of the xjy
Gz scale parameter, Because o = 1 the coefficient of variation is

proportional to the reciprocal of -

b coefficients of first degree terms

T scale factor for exponentizl term
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¢k coefficients of exponents

6,  location parameters of mountain peak

Other symbols of equation (20) are defined in appendix A, The plan
of the experiment is a 1/2h  replicate of a full factorial experiment
with g independent variables, and the number of treatments, t, is
therefore

£ = 28D (21)
The subscripts have the domains
i=1, .. ., ¢t
k=1, .. ., 8
L=1, . . ., R

m=1l, . . ., m

Influence of Parameters on Shape of Surface

As shown by equation (20) if 1, = 0 the only odd degree terms are
PIZi1s = » =3 ngig and therefore the surface defined by (20) is inclined
with respect to the coordinates by thie values given to the coefficients
¥1, + + .5 ¥,, and they define the approximate inclination of the surface
with respect to axes through the origin if T is small. These inclina-

m
tions of the surface are fixed by the function

g
A, =1+ Py X
k=1

(22)

The bell shape is provided by the exponent of the exponential compo-
nent of equation (20) and the exponent is

g
C=:
i/
k=1

by Gy = 6,0 (23)

If 1, is large in comparison with the values of Vi, the function given
by equation (23) will provide a local maximum for (20) when (23) takes on
the value of zero. The plan of the experiment will consist of treatments
having coordinates such that Xjg = #1. Also, the §, will be given
values of *1. Thus the local maximum will occur at a corner point of
the hypercube of the experiment, namely at the corner point for which
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xjx = 8y for k=1, .. ., g. Furthermore, as is well known from the
literature on the normal distribution density function, the function de-
fined by equation (23) implies that the function defined by equation (20}
will have two points of inflection on each coordinate axes. If these
points are named Xzx and xpy they are located by the equations:

n

x = 6, - 1/ (247

(24)

- 1/2
The values of x,, for & =1 are given by table III.

The magnltude of the function given by (20) relative to the error
variance can be adjusted by adjusting the wvalue of the population
parameter 6j. Thus the effect on optimal estimation procedures of the
relation between function mean values given by (20) and the error wvari-
ance o2 can be investigated by assigning a fixed value to o2 (namely
g2 = 1) and then investigating the effects of changes in the parameter
8p. (Thus the model has been made consistent with the usual assumption
that o2 is constant over the space of the experiment.)

Cholce of Population Parameter Values Unfavorable
to the Decision Procedure

The set of wvalues (mp, p» g} will be called the statisticians
strategy. The set of values Yy, ¢, 62, and T, (see eq. (20)) will be
called nature's strategy. The question arises as to what constitutes a
least favorable, or as an approximation, what will comstitute a highly
unfavorable set of wvalues of the parameters in nature's strategy?

With respect to the decision procedure, and for the two level frac-
tional factorial experiments, an unfavorable distribution of the param-
eters (coefficients of the terms of the linear model) occurs if the param—
eters (p in number) have the expectations of the order statistics of a
normal distribution for a sample of size p. (See Holms and Berrettoni
(1969).) Assume that observations are drawn with a sample of size g.

Let the fractiles be q3 where {1 =1, . . ., g. The sample fractiles
are

4 = 3/A + g (25)
These values of g for =4, 5, 6, 7, 8 are shown in table I, 1If
the sample order sgatlstlcs correspondlng to these fractiles lie approxi-
mately on a straight line on probability paper, then the sample is con-
cluded to have been drawn from the distribution represented by the prob-
ability paper,.
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Probability paper for the half normal distribution was used for fig-
ure 2 and consists of coordinates for the fractiles, 455 and the fractile
points, wj. Straight lines were drawn on these graphs” connecting the
origin with the point defined by gq; = q, and Y3 = 1, Values along
these straight lines were then read to yield the values of ¥5 shown in
table II. Thus if these wvalues of . are separate population param-
eters for each of which single sample”values are drawn, the sample values
will approximate thelr mean values and therefore they will approximate
the order statistics of samples of size g drawn from half normal dis-
tributions, Thus the Vg of equation (20) are likely to result in first
degree regressor coefficlent estimates of the fitted equation and associ-
ated mean squares that will be declared imsignificant by the decision
procedure. Such decision errors have two undesirable consequences,
namely, first some appropriate first degree terms are immediately lost
from the fitted model and second, the denominator of the test statistic
is made too large so that useful higher order coefficients are also de-
leted. The distribution of the ¢ thus appears to be unfavorable even
if the 1, of equation (20) is nonzero.

The ¥ therefore constitute a distribution of parameters unfavor-
able to the decision procedure based on the Uj; distribution and using

the strategy (my, a,, of). (See Holms and Berrettoni (1969) for further
discussion of this kind of an unfavorable distribution of parameters.)

The particular values chosen for the Ve of equation (20) have been
discussed in connection with the description of tables I and II. For
simplicity, the values of the ¢y of equation (20) will be set equal to
the g values of table II.

The complexity of the fitted equation needed to represent a popula-
tion model depends on the surface irregularities that occur within the
domain of the experiment. (A basic assumption is that good prediction
accuracy of the fitted equation is to be expected only within the domain
of the experiment.) The domain of the experiment is defined by its
corner points and they are located at =xp = *1. Thus the domain is de-
fined for all k by -1 2 x, 21, One type of surface irregularity that
can occur within the domain of the experiment is a local maximum and as
may be seen from equation (20} if Ty 1s sufficiently large with respect
Lo Yk, a local maximum occurs at x = 8 for any k. Another type of
irregularity is defined by points of infleetion. As developed in the
discussion of equations (24) the coordinates of the points of inflection
of the bell-shaped surface defined by equation (20) are given by equa-
tions (24). Consider for example, the values listed in table III for
g = 8. Then x,, of equation (24) is within the domain of the experi-
ment for k=1, 2, 3, 4, 5, 6, and 7 but is outside for k = 8., (All of
the points of inflection defined by xpi of equations (24) are ocutside
of the domain of the experiment.)

In view of the discussion of equation (19) the final form of the

population model equation is an adjusted form of equation (20) namely
it is
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Pigm T (26)

-

Equation (27) results from substituting from equations (22) and (23) in
equation (20). With ¢, = ¥, the useful computing equations are (22),
(23), and (27). ‘

-C
Yiom = 81[A1‘+ T e 1) 27)

Choice of Scale Parameter Values

Nine values of 6, will be investigated, namely, 8 = 1/8, 1/4, 1/2,
1, 2, 4, 8, 16, and 32. Three values of Ty will be investigated,
namely 1, = 0.0, 1.0, and 2.0. The simulations will be performed for
almost all combinations of these &, and 145 values.

EVALUATION OF DECISION PROCEDURE

Following the selection of terms (where some of the coefficient esti-
mates are set equal to zero)}, the predicted values of the dependent vari-
able can be efficiently computed for all of the possible combinations of
the independent values, by the reverse Yates method of Duckworth (19653).

Where egi, are the '"observation' errors, namely the pseudo normal
random numbers generated in the nth simulation, the "observations" are
given by

= P g-h
Yoigmn = Mitm T %01in i=1,2,...,2 (28)

After the model has been fitted and insignificant terms deleted, the
difference between predicted values, ¥,igm.,» ©f the dependent variable
for the nth simulation and the population mean will be called the predic-
tion error, and thus it is :

=y i=1, 2, ..

- B
epi%mn plfmn igm -y 2 (29)

Over the ng simulations, the sample mean square error of prediction
for a given treatment is
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n

e
2, =, el (30)
Cpigm ~ @ / ; “pifmn
e —
n=1
The maximum of such errors over the treatments is
2 .2 - (2 )
®max = “pim,max max pigm (31)
i=1,...,28 '
The mean of the squared error over the simulatlions and over the
points of the space of the experiment is
28
D
“pam 28 epiZm (32)
i=1

Equations (31) and (32) provide two criteria for measuring the effeec-

tiveness of a strategy ( s Opos og). The triad of particular values of

, and ¥ that mlnlmlzes TEm, max {as given by eq. (31)) can be
calleg a security strategy, and the triad of values that minimizes E%Em
can be called an approximate Bayes strategy, if the points of the space
of the experiment are assumed to be equally likely of being of interest.
In either case, the absolute values of squared errors would have been the
prime consideration.

An example of a situation where such definitions of error would be
appropriate occurs 1f the experimentor seeks to maximize some predicted
response, such as the strength of a material as a function of its ingre-
dients. For such an example, the region of the space of the experiment
of greatest interest would be the region in the vicinity of the maximum
point, where the function would most likely have its sharpest curvatures
and largest errors due to lack of fit. As was discussed in comnection
with equation (23), this is the point where xy, = §. . For such an exam-
ple, the appropriate criterion to be minimized for the choice of a strat-
egy would seem to be the quantity E%nm,max of equation (31).

The criteria of equations (31) and (32) will be evaluated using com-
puter simulations using (in most cases) 1000 experiments. Thus the long
run mean squared error of the decision procedures will be evaluated.

This leaves open the question of how badly a decision procedure might
perform in individual cases. One approach to this question is to evalu-
ate the stability of the mean squared errors observed in the simulations.
Thus in addition to the criteria of equations (31) and (32), two other
criteria for the effectiveness of a strategy (mp! Gy, @f) will be inves-
tigated. They are concerned with the stability of the quantities defined
by equations (31) and (32). The instability of these criteria can be
measured by the variance of the square of the prediction error, If Y
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is a random variable, the unbiased estimate of the variance of Y from a
sample of size n, is given by

i e ng \2
. NNz oS
feyy = ? Jo-l) ) Yn) (33)
n=1 € \n=1

e random variate of interest is the squared error of prediction, namely

€p1fmn - From equation (33) the estimate of the variance of e5itmn is
| ng /e - 2
N | N
{J 2 =—-—-—-—-—'l \s ) z—i-l 2
V(epilmn) a =117/ (eplzmn ne\\i_j'epizmn (34)
€ n=1 =1

Equation (34} gives an unbiased estimate of the variance of the squared
error over n, simulations. The waximum of this quantity over the space
of the simulated experiments is defined by

G(éﬁ)ma = V(e 2 oy = ™% {V(e (35)

)J
. i
j=1,,..,28l Ppltmn

The arithmetic mean of the variance of the squared error over the
space of the experiments is defined by

) (36)

DESIGNS OF SIMULATED EXPERIMENTS
Number of Treatments

Although statistical decision procedures can be defined operationally
for any size of sample, however small, the point of view of the present
investigation is that an experiment should (1) furnish all of the informa-
tion to estimate the model coefficients and (2) provide adequate test sta-
tistics for the model selection procedure, A further assumption is that
to provide reasonably good estimates for both the numerators and the de-
nominators of the test statistics, the experiment must contain at least
16 cbservations.,

IPlans of Experiments

An experiment plan will be defined as a sequence of t specified
treatments involving g independent variables. The experiment will be
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a 1/2h fraction of the full factorial experiment. The number of treat-
ments is therefore as given by equation (21}:

r =28

For the present investigation with g = 4,5, 6, 7, and 8, and using
16 treatments in each experiment, the plans (using the notation of Holms
(1967)) will be pgenerated one from the other ‘as follows:

g=25 h=1>1

273%%

XO = X2X3X4X5

o0
"
e
o
1
W

X = XlX3X4

XO = X2X3X4X5 = X1X3X4X6

XO = X2K3X4X5 = K1X3X4X6 = X1X2X4X7

Xy = XXX Xs = XXX = X X,K,Xy = XX X Xg

These generators are also displayed by table IV. The corresponding
groups of defining contrasts are displayed by table V. The plan matrix
of treatments for the full factorial experiment on four independent vari-
ables may be seen by looking at the first four columms of table VI. For
the fractional replicates defined in table IV, the levels of the added
independent variable for g =5, 6, 7, 8 are shown by the fifth, sixth,
seventh, and eighth colums of table VI. Yates' notation for treatments
and their order is shown in table VII, The treatments of table VI (in
Yates' notation and order) and some of the lower order elements of the
aliased sets of parameters {for g =4, 5, 6, 7, and 8) are shown in
table VIII as derived from table V.
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Aliased Parameters Initially Assumed to be Nonzero

In the fitting of models to the fractional factorial experiments,
one or more of three assumptions will often be made, in choosing param-
eters for the initial model from aliased sets of parameters,

1. A first degree term is always preferred to a two factor inter-
action. ’

2. A lower order interaction is always preferred to a relatively
higher order interaction.

3. The experimentor can label the independent variables X.,, . . .,X
in the relative order of his belief as to their relative tendency to &
interact. (The design of blocked fractional factorial experiments ac-
cording to prior beliefs about the parameters has been discussed by Sidik
and Holms (1971) and also by Sidik (1972c) and (1973).

Aliased sets of the lower order parameters corresponding to the esti-
mates provided by the experiments are shown in table VIII. These esti-
mates will be assoclated with, and given the name of, only one of the
parameters in each of the aliased sets, and all other parameters in an
aliased set will be set equal to zero. The parameters to be retained
for the initial model will be selected in a manner consistent with the
three previously stated assumptions.

In the aliased combinations, the lowest degree parameters will be
assumed to be the only possible nonzero parameters in any aliased set.
Where there is more than one parameter of lowest degree, the parameter
with the lowest sum of its subscripts will be assumed to be the only
nonzero parameter of the aliased set. 1f there is more than one param-
eter of lowest degree with lowest sum of subscripts, that parameter will
be assumed nonzero which has the lowest first subscript, or lowest sum
of its first two subscripts, or lowest sum of its first three subscripts,
and so forth,

Based on the preceding rules (and before the deletion of terms under
the statistical decision procedures) the assumed nonzero parameters of
the model equations to be initially fitted to the observations are
exhibited by the equations of table IX.

Space for Which Predictions Will Be Evaluated

In the case of a fractional factorial plan, the parameter estimates
are based on the observations generated from population mean values ac-
cording to equation (26) for the particular treatments (particular com-
binations of +1 and -1 for the independent variables) as specified by the
fractional factorial plan. The estimated parameters then give a predic-
tion equation which should be usable at least for predicting values of -
the dependent variable corresponding to the treatments actually present
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in the particular fractional factorial plan. However, the experimental
space consisting of all possible combinations of +1 and -1 for the inde-
pendent variables can be said to have been "spanned" by the treatments
actually used in the fractional factorial plan. The guestion arises as
to whether the predicting equation should also be used for predicting
values of the dependent variable for points in the space of the experi-
ment that are not in the fractional factorial plan. The object in laying
down the procedures of the present investigation is to try to simulate
those assumptions that would ordinarily be made by an experimentor. In
this case the question may be rephrased as: "Does the making of predic-
tions at points which are points of the full factorial design, but not
points of the fractional design actually run, constitute an act of extrap-
olation (not generally allowable) or an act of interpolation (generally
allowable)?" The assumption now made is that such predictions will be
viewed as interpolations - that the fitted model ought to be useful in
making predictions at all of the points within the space "spanned" by the
experiment. Thus the equations of table IX will be used for making pre-
dictions at all possible combinations of values of +1 and -1 for the X,
and not just those values listed in table VI.

Correspondingly, although the fractional factorial plans all have
261l = 16, the number of points for which predicted values will be com-
pared with population values is always 28, Therefore for g =4, 5, 6,
7, and 8, the numbers of comparisons between population values and pre-
dicted values will be 16, 32, 64, 128, and 256, respectively. For these
comparisons, the predicted values can be obtained using the "'reversed
Yates Method" as described by Duckworth (1963).

COMPUTER PROGRAMS
Flow Diagram of Program PQOOLES

The main logic of the program POOLES is shown by the flow diagram
of figure 3. The Yates method subroutine (section %) as called in sec-
tion 2, the computation and ordering of mean squares in section 3, and
the sequential deletion procedure of section 4, are essentially the same
as the similar operatiomns of "POOLMS" (as given by Amling and Holms
(1973)). "“POOLES" differs from "POOLMS" mainly in sections 1, 2, 5, 6,
and 7; the reason for the additional sections being that "POOLES" pro-

vides a Monte Carle evaluation of the pooling strategies based on errors
of predictions.

Details of Program POOLES

Section 1: Declarations, constants, population means, and strategy. -
The constants defining the populations, the experiments, and the sequen-
tial deletion strategy, are read from data cards in the following order,

with the order of the fields being the same as the order of the symbols
in the following description:
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Format Description

(1346, AZ) Arbitrary literal information such
as particular use of program,
date of last change, and so forth

(315) LGMH, NE

(15, 8F5.0) KG, (PSI(K), K=1, KG)
(15, 8F5.0) KG, (PHI(K), K=1, KG)
(15, 8F5.0) KG, (DEL{K), K=1, KG)
(15, 8F5.0) LTH, (THETA(L), L=1, LTH)
(15, 8F5.0) MTAU, (TAU(M), M=1, MTAU)
(315) MP, KP, KF

After the declarations and initial constants have been read, the
major operation is the synthesis of the population mean values in accord-
ance with equations (22), (23), and (27). The solutions of these equa-
tions (the synthesized values of y;..) are to be stored in an array
coded as YMU (I,L,M). The points in the space of the experiment are ac-
counted for by the loop "DO 20 I = 1, IP." Within that loop, construc-
tion of the Ay and C; of equations (22) and (23) is done within the
loop "DO 15 K=1, KG." The loop contains some special NASA-lewis func-
tions available within the IBM 7044-7094 direct couple system. As used
in POOLES the Boolean function AND ((I-l), J) gives the logical intersec-
tion of two 36 bit integer arguments as a real function. As used in
POOLES the Lewis shift funetion IARS (KM1, AX) gives the integer function
resulting from the accumulator right shift of the real wvariable AX by the
integer number KMLI of binary places,

The constructions of pjg4,, oOver the number of predicted values IP
are then repeated for all values & =1, . . ., &g and m=1, . . ., m
by the loops "DO 49 M=1, MTAU" and '"DO 48 L=1, LTH." The array YMU
(1,L,M) then contains all the population means as determined by equa-
tion (27).

For the given experiment plan and for the established sets of popu-
lation means, more than one model deletion strategy can be evaluated.
The strategy to be evaluated, and its subsequent evaluation, begins with
the statement "50 READ (5,824) MP, KP, KF." On completion of the evalua-
tion of a particular strategy, control is transferred back to statement
50. Subsequent strategy investigations are initiated by reading addi-
tional data cards according to statement 50. The operation of the pro-
gram ends when such cards are exhausted,

The error simulations are generated so that each strategy is com-
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pared for the same set of ng time 281 random numbers. This is
achieved by reinitializing the random number generator for each new
strategy with the statement ''CALL SAND (Xs)." The procedure generates

a sequence of pseudo random numbers with a rectangular distribution by
taking the low order 36 bits of the product ry..3 *K where r, ; = pre-
vious random number and rg =1 and K = 515, "This fixed point number
is then floated and returned to the calling program as a floating point
nunber between 0 and 1 (Tausky and Todd (1956)).

The prediction errors and their squares are stored in the arrays
ERSQ (I,L,M) AND ERSQSQ (I,L,M). These arrays are initially cleared by
the loops terminating at statements 97, 98, and 99. The arrays ER5Q and
ERSQ5Q used a large amount of storage. Many simulations used L =6
and M = 6 but storage was exceeded with I = 256. To accommodate
I = 256, the necessarily smaller values of L and M were used by msk-
ing the appropriate changes in the DIMENSION and FORMAT statements.

Section 2; Simulations and model fitting. - The number of experi-
ments simulated is NE. The performance of these experiments and their
analysis is controlled by the loop: "DO 699 N=1, NE." Within each ex-
periment, the pseudo-normal random nurbers for the IT treatments are
generated within the loop '"DO 215 I=1, IT, 2," the transformation to
approximate normality being that described by Box and Muller (1958).
Each set of IT random nunbers for an experiment is used with all pos-
sible combination of the population parameters 8, and 1, through the
gtatements '“DO 690 M=1, MTAU" and'"DO 680 L=1, LTH." TFor all of these
cases, the simulated observation errors, as stored 1n RN(I), are to be
added to the population mean values (stored in YMU (I,L,M)) for the par-
ticular treatments (I =1, . . ., IT) that were specified for particular
values of g by table VI. Accordingly as g =4, 5, 6, 7, or 8 (that
is, according to the value of KG) control is transferred to statements
204, 205, 206, 207, or 208.

After synthesizing the "observed™ values of YOBS(1) the "SUBROUTINE
YATES" (section 9) ending with statement 909 is used to compute the
array B(I) which contains (except for division by the number of treat-
ments) the Yates estimates of the parameters of table VIII, (The opera-

tion of the statements within SUBROUTINE YATES was described by Amling
and Holms (1973).)

Secticn 3: Construction and ordering of mean squares. — The mean
squares are formed from the parameter estimates (for those terms beyond
Bo) and a pointer function is created within the lecop "DO 309 I=1, IT."
The strategy of doing no sequential deletion is represented by the code

= (J, and if = 0, contrel is transferred to section 5. Otherwise,
ordering of the mean squares is done within the loop "DO 313 J=1, ITM2."

Section 4: Deletion of terms. - The statistical decision procedure
using the strategy (mp, a,, af) 1s applied in this section as was de-
gcribed for POOLMS by Amling and Holms (1973). The sequential deletion
begins with the pooling of the initial residual within the loop
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DO 415 J=1, MP." The sequential deletion based ou conditional pooling
("chain pooling') then proceeds within the loop "DO 419 J=MPP1l, ITM1."
This results in the retention in the model of Bp and rejection from
the model of all terms with mean squares as small or smaller than the
cordered mean square with subscript JETA.

Section 5: Predictions. ~ Predicted values of the dependent vari-
able for all the 28 points of the experiment space spanned by the frac-
tional factorial experiment are computed in this section using SUBROUTINE
YATES and the reversed Yates method as proposed by Duckworth (1965).

The operation of Yates' method followed by the reversed Yates
method™ is illustrated by the following table for a 22 experiment:

YATES METHOD

YOBS B B/FIP
o] Y, + ¥, Y, + Y, + Y+ Y, (Y1+Y2+Y3+Y4)/4
¥, Ty + Y, Yy, - Y, 4 Y, - ¥, (Y, - Y, +Y, - Y3)/4
Yy Y, ¥ Y+ Y, - =Yy (Y3 +Y, - -Yy)/4
Y, Y, - ¥, Y, - Y, - ¥, Y (Y4 - Y, - Y, 4+ Yl)/4
REVERSED YATES METHOD
YOBS B YPRED
(Y, - Yy - ¥y + Y )74 (Y4 - Y,)/2 Y, Y,
(Y3 +Y, - Y - Yz)/4 (Y, + YQ)IZ Y, Y,
(Y2 - Yl + 4 - YB)/4 (Y3 - Yl)/2 Y2 Y3
(Yl + Y, + 3 + Y4)/4 (Yl + Y3)/2 Y Y,

In the case of the computer program, there are 28°h parameters
estimated from a fractional factorial experiment. They are exhibited
by the prediction equations of table IX. The reversed Yates method re-
quires the insertion of zeros for all parameters of a 28 model that
are not estimated in a 28-h experiment., To make the 28 predictions
corresponding to experimental points of the full factorial experiment,
the 28R coefficients together with 28 - 280 zeros are listed in
the correct Yates ovrder for the 28 coefficients of a full factorial
experiment. The statements of section 5 then combine estimates for such
estimable parameters with zeros for the nonestimable parameters in the
reverse Yates method, This is done according as g =4, 5, 6, 7, or 8
by the transfer of control to statements 540, 550, 560, 570, or 580,
respectively., This list is then reversed and the reversed Yates method
is used as In section 5.
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Section 6; Accumulation of errors. - The squared error for each
prediction is accumulated (as required by equation (30) in the array
ERSQ (I,L,M) as computed with the loop "DO 609 I=1, IP." These accumula-
tions are stored for each combination of L and M as indicated by the
loops terminating at statements 680 and 690, and this process is repeated
for each of the ng sets of IT random numbers as indicated by the loop
terminating at statement 699, For the purpose of computing the variance
of the squared error of prediction, the quantity

g

?;W 2
7 / (eﬁ igm )
n=1

of equation (34) 1s computed within the loop ending at statement 609 and
stored as ERSQSQ(I,L,M).

Section 7: Determination of maximum and mean squared errors and
their variances. - The purpose of this section is to determine maximums
and means of the prediction errors over the space of the experiment after
the errors have been evaluated over that space by accumulating over the
simulations. The accumulation over the number, ng, of simulations had
been stored in the array ERSQ(I,L,M). TFor particular L, and M, the
determination of the largest prediction error over the space of the ex-
periment as defined by equation (31} is done through repeated use of the
library subroutine AMAX1, which determines a real number as a function of
two real arguments. This is done within the loop '"DO 750 I=1, IP." The
summation for the mean squared prediction error over the space of the ex-
periment as required by equation (32) is also done within the same loop
terminating at statement 750, After division by the appropriate divisors,
these two evaluations of error are stored in the arrays (ERSQMX(L,M) and
AVERSQ(L,M). The quantity

Ny . 5 / De 2
F>h_'\ 2 ) ‘1_ T:_\ ez

L/ (epigmn - n\ /_/ pitm
n=1 n=1

is computed and stored as TEM within the loop ending at statement number

750. The quantity V(e%m)max defined by equation (35) iz determined to
be the maximum of the values of TEM as determined by

E = AMAX1 (E,TEM)

2

and from this maximum, V(Elm nax

ment

is computed and stored with the state-

VESQMX(L,M) = E/FNEMI

The sum of the values of TEM as given by
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F=TF + TEM

is then used to compute V(E%m) according to equation (36) using the
statement ‘

AVVESQ(L,M) = F/FEMLIP

The computation ends if the data for MP, KP, and KF is exhausted;
otherwise a new strategy is investigated by returnlng control to state-
ment 50,

Details of Program MODEL

The main work of the investigation was done with program POOLES,
Some properties of the population model were explored using a second pro-
gram called MODEL. A summary of the two programs showing their names,
prinecipal options and outputs is contained in table X.

The program MODEL was used to exhibit the mean values of the popula-
tion without any variability introduced by randomness. Thus population
mean values were computed according te equation (26), but there was no
random number generator to generate errors with specified properties as
suggested by equation (28). The only errors are the round-off errors of
the computing system, and the system consisted of an IBM 7044 monitor
direct coupled to an IBM 7094 central computer. For that system, the
round-off error typically cccurs in the eighth significant figure of deci-
mal output. The lack of intentional random error in the program MODEL
was symbolized by showing a2 = 0 in table X.

- The manner in which the components ( » @¢) influence the deci-
sion procedure was described by Holms andeerrettonl (1969). The manner
in which these paramerers are read into the computer program was desecribed
for a different program called POOLMS by Amling and Holms (1973), A

major distinction between DOOLMS and the programs of the current investi-
gation is that the value mB is now possible, TIts use merely implies
that no deletion of any ki W111 be applied to the initial model. There-
fore, as suggested by the parameters of table X, the program MODEL gener-
ates no random error, and uses no statistical decision procedures on the
initial fitted models (as they were given in table IX).

The output of MODEL results from the following:

1. Population mean values are generated according to equation (26)
and listed as YMU(I,L M)

2, The population mean values are used directly in the Yates proce-
dure to estimate the parameters of the initial models of table IX. These
estimates are listed as BILM(I,L,M).
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3. The reversed Yates method (Duckworth (1965)) is used to compute
predicted values for all of the 28 treatments of the full factorial ex-~
periment. Differences between these predicted values and the population
values from equation (26) are defined as bilas and are listed as the array
named BIAS(I,L,M).

Because 16 parameters are estimated from orthogonal contrasts of the
16 population values for the 16 treatments of the 2% experiment, the bias
for these treatments consists merely of computer round-off errer. For
the cases of g > 4 (namely for the fractional replicate experiments) the
bias values for the points of the full 28 experiment not included in
the 16 points used for the estimating should be much larger than just
round-off error.

DESCRIPTION OF RESULTS
Bias Errors

The statistical decision procedure was investigated by fitting poly-
nomial equations to simulations of fractional factorial experiments of
type 28=h yhere g =4, 5, 6, 7, and 8, and where h = g - 4. The poly-
nomials that might reasonably be fitted in such circumstances were listed
in table IX. If such fitted models are to be used for making predictions
at all of the hypercube points of the corresponding 28, (full factorial)
experiment, then bias errors can be expected for those predictions that
are made at points of the space of the experiment that were not points
for which observed values were recorded., In order to best understand the
results of the Monte-Carlo simulations that will include both bias and
variance errors, the errors due to bias alone should be investigated.

As previously described, the program MODEL was written to exhibit
the bias errors that exist when there are no random errcors and when there
is no model deletion. Some results are shown by table XII, As is shown
by table IX, the case of g = 4 has a starting model with 16 coeffi-
cients fitted to 16 "observations' and with h = 0, predictions are made
only for the points of the 16 observations. The result consists of 16
predictions containing only round-eoff error and no bias error, Thus for
g=4 and h = 0 table XII shows the consequent zero bias for all com-
binations of values of 9 and 1 as indicated by the fact that the max-
imum absolute wvalue of the bias is so listed for all combinations such
that 6 =1, 32, and *v =0, 1, 2, 4, 8, 16,

In the cases of the fractional factorial experiments, the population
model (as shown by eq. (26)) need contain no more than nine first degree
terms for g =5, 6, 7, and 8, for the case of v = 0. For this case,
the fitting of the equations of table IX to the 16 "observations'" from
the fractional factorial experiments always results in zero bias as con-
firmed by the results from program MODEL in table XII.

For the cases of h > 0 (the fractional factorial experiments) and
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for T Z 1 (the presence of higher than first degree terms in the pépula-
tion model of equation (26)), the maximum absolute values of bias in
table XII were always greater than zero. Furthermore the bias wvalues
were always quite large in comparison with the largest population values
fFor all wvalues of T > 1. (The largest bias values were always less than
20 percent of the largest population values for T = 1 but were always
larger than 20 percent of the largest population values for T > 1 for
the values of 9 =1 and 8 = 32 as listed in table XII.) Based on
these observations of very large bias with t.> 1, the consideration of
optimal decision procedure strategies (mp, 0ps og) will be malnly limited
to the conditions of T =0 and T = 1,

Strategy Options

The conceptually simplest strategy is to do no deletion., Then no
mean squares are initially availlable for a test statistic and this fact
and the associated strategy will be symbolized by writing mp = 0. Con-
‘sistent with such a strategy, there will be no mean squares tested for
pooling which is represented by o, = 1.0 and none can be judged insig-
nificant which is represented by of = 1.0,

The choice of just the smallest mean square as the denominator of
the test statistic is represented by wy, = 1, and subsequent pooling and
significance tests are represented by ap'é 1 and of £ 1 as discussed
by Holms and Berrettoni (1969).

Consider the situation where t treatments have been used to pro-
duce t observations and there are therefore t degrees of freedom to
be partitioned between single degree of freedom estimates of model param-
eters and the degrees of freedom for the denominator cof the test statis-
tic at the start of the decision procedure. If the data analyst does not
have prior information on the complexity required of the model, the wise
strategy would seem tc consist of starting with the maximum possible num-
ber of degrees of freedom for the model and therefore with the minimum
possible number of degrees of freedom for the test statistic, namely,
use mg =1, The use of o, <1 will then permit the denominator of the
test statistic to be augmented with additional degrees of freedom thus
increasing its sensitivity. Based on this line of reasoning, no investi-
gations with POOLES were run with m, > 1,

The combinations of and ay available for investigation are
listed in table XI. Not alg of these combinations were investigated with
ng = 1000 because some preliminary work with ng, = 10 had suggested
that for values of 6 » 1 a strategy becomes ineffective if both (1) a
very large value of 4o, is used to severely limit the nuwber of degrees
of freedom for the test statistic and if (2) this is followed with a very
stringent final test of significance as called for by a very small wvalue
of agf. Consistent with this concept, ‘the values of of were mainly
limited to ag z up/lO with the exceptions occurring for 6 £ 1.
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Strategies for which o, and 0f are both large will be called
agressive strategies. They tend to retain most of the original terms in
the model. Strategies for which o, and of are both small will be
called defensive stratepgies. They Eave strong tendencies to discard
terms. The intermediate strategies where « is large and oy is small
will be called moderate strategies. They tend to pool a relatively small
number of terms into the denominator of the test statistic and because of
the ordering of the terms by absolute magnitudes, the denominator remains
fairly small, and so the final test at level oy is a relatively sensi-
tive test, and not as defensive as it would be if O had been small for
the same Gg.

Optimal Strategies

Tllustrative output from POOLES is shown by appendix €. Similar out-
puts for many strategies (mp, %p s af) were scanned to find the strategy-

giving the smallest value of E%ax (eq. (31)) for given values of g, 9,
and T. Results are shown by table XIII together with assoclated values
of V('e"z)max (eq. (33)). The resulting values of E%ax for large ©
and © = 0 can be compared with expected values, If the terms in the
population model are much larger than the variance error, and if in the
population model (eq. (26)), T = 0, then the number of terms that should
be retained in the population model is g + 1, With 02 =1 and with

g + 1 terms estimated from 16 observations the total expectation of
error variance for the prediction based on g + 1 independently esti-~

mated terms is
E(82) = (g + 1)/16

From the preceding equation and from table XIII, the values of E(EQ) and
E%ax for ©6 = 32, v = 0, for the several values of g were as follows:

g (g + 1)/16 €2, (8 = 32,

T = 0)
4 0.3125 0.3447
5 375 LA177
6 L4375 .5038
7 .500 L5745
8 .5625 L6793

Some of the optimal strategies of table XIII for g > 4 are seen to
be quite defensive for large T even at the larger values of @, where
the variance error is comparatively small, The question arises as to why
a defensive strategy would be employed in the presence of large bias and
relatively small variance errcor. The population model surface was fairly
complex as suggested by equation (26) and a maximum point was located at
& = -1, 1, -1, -1, . . ., but that point was not one of the observation
points of the fractional factorial experiments. The irregular shape of
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the population model could cause relatively large magnitude coefficients
of the higher order terms of the fitted models to be retained, which
would bring predicted values close to the population values for those
cases where predictions were being made at points of the design where
"observations'" had been recorded. For -the points of the space correspond-
ing to fractions of the experiment not performed, the predictions could
contain very large errors due to such high order terms. For these pre-
dictions, the errors are reduced by the deletion of such terms and this
is why the optimal. strategies of table XIII were highly defensive (used
small values of ap and ag) for h » 0 when both 8 was large and
T was 21.0.

Aside from questions arising from 1t > 1 two gquestions that might |
be asked are: '"Under what conditions are some of the (mp, ap, af) strat-
egies optimal?" and "Is there some particular strategy (m,, o, of) that
is widely useful?" An attempt to exhibit an answer to these questions is
given in table XIV. It lists a, and oaf as row and column headings
and lists the parameter values g and 8 as tabular entries. Results
for the purely first degree population model (t = 0) are shown by
table XIV(a) and results in the presence of a small amount of .surface
curvature (1t = 1) are shown by table XIV(b). These results show that for

=0 and 9 small (8 S 4.0) the strategy (mp,.up, ag) = (1, 0.75, 0.10)
is a widely useful strategy, but that for 0 and-large 8, the opti-
mal strategy most often used op = ag, with decreasing values of « and
af for increasing values of 6. In comparison with these results %or

= 0, table XIV(b) showed that relatively larger values of q, were
optimal for 1 = 1. (Large values of a tend to inhibit the pooling
of mean squares inte the denominator of the test statistic, which was
apparently beneficial when the bias risk was increased by going from

= 0.0 to 1t =1.0).

The strategy (mp, Op s ag) = (1, 0.73, 0.10) was suggested as a
widely useful strategy, particularly for those values of 8
(1.0 £ 8 £ 4.0) where the relative influence of the variance error would
be moderate and for the value of <t (t = 0.0) where the bias error would
be absent. Other values of 8 and 1 (table XIV) had resulted in other
strategies being optimal. These results raise the question of: "Just
how fast does the mean square prediction error and its variance change
when the values of .ap and of are other than optimal?”

Some parameter values of g and 8 requiring relatively extreme
values of » G5, and of are designated by the. footnoted values in
table XIV, mgow gast the mean square prediction error and jits variance
changes when the value of ap and og' are other than optimal for these
footnoted cases of g and 8 are exhibited by table XV. (Some values
of g and @ having less extreme values of o, and of as optimal
strategies are also exhibited in table XV.) The cases exhibited in
table XV are limited to the low bias cases of 1 £ 1.0. The values of
E%ax that identify optimal values of a and of are indicated by
solid line rectangles. For comparison, the values of: é%ax associated

with the widely optimal strategy of.(mp, ap, af) = (1, 0.75, 0.10) are
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identified by dashed line rectangles. One conclus%on that is evidenced
by table XV, is that the values of E%ax and V(€“)pax always increase
very slowly from the optimal values of dp and ogf for the more agres-

sive strategies (larger values of o, and af}. On the other hand (see

particularly tables XV{¢)} and (g)), é%ax and V(é’z)max increase quite
rapidly for strategies that are too defensive {(values of dp and oaf
that are smaller than optimal).

These observations suggest that the use of a moderate strategy when
an aggressive strategy is optimal is not too serious - the differences
are mainly functions of variance error. On the other hand the use of a
defensive strategy when it is not optimal (as in some cases of large bias)
can be disastrous.

The overall conclusions from the results exhibited by tables XIII,
X1V, and XV seem to be that chain pooling with 16 orthogonal estimates of
regression coefficients with no estimate of pure error should be done
with the strategy of (mg, p, afg) = (1, 0.75, 0.10), Such a strategy is
a moderate strategy tending to retain many of the terms, if many terms
are needed. If, with such a strategy, many of the terms are rejected,
the true situation may be concluded to be one where the underlying popu-
lation response surface is relatively simple. In such a situation, the
fitted equation may be used (1) for data smoothing (for computing pre-
dicted values at points of the space that gave the observed values),
(2) for interpolation (for computing predicted values at points interior
to the space spanned by the experiment, and (3) for extrapolation (for
computing predicted values at points exterior to the space of the experi-
ment). Of course -~ as is well known for extrapolations - even if the bias
error is small, the variance error rises very rapidly with the distance
of the predicted points from the space spanned by the observed points).

If on the other hand, the strategy (mp, ap, af) = (1, 0.75, 0.10)
leads to the retention of a fairly complex model equation (one with sevy-
eral terms of higher than first degree) then the use of a more defensive
strategy might result in an equation with less bias when used for inter-
polation or extrapolation, but the prediction errors would be large in
any case (as shown by table XIII for g > 4 and 1 > 1). 1In these cir-
cumstances, the reasonable conclusion would seem to be that the reduced
model obtained with (mp, p s ag) = (1, 0.75, 0.10) is satisfactory for
data smoothing at the treatment points, but that more experimenting must
be done (such as the performance of the composite experiments of Box and
Hunter {1957)) if any interpolation is to be done,

CONCLUDING REMARKS

Model fitting procedures were investigated for the types and sizes
of experiments that are appropriate to empirical materials optimization
studies. The two-level, fractional-factorial, fixed effects experiments
are often appropriate to such purposes, and they provide the highly de-
sirable orthogonal estimates of the model parameters, Chain pooling is
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an appropriate method of parameter estimation and selection for such ex-
periments., ‘

For the cases of nonorthogonal experiments, the subject of principal
components regression was examined and was found to provide a suitable
procedure for making the results of such experiments amenable to the
methods of chain pooling.

In empirical optimum seeking (as in materials optimization) the cri-
terion for model parameter estimation and selection should be the minimi-
zation of prediction error. In the Monte Carlo study performed to find
minimum prediction error strategies when chain pooling methods are used
for model selection, simulations were performed using population models
intended to represent response surface applications. The results led to
the following recommendations: '

1. Use the strategy (m,, ag) = (1, 0.75, 0.10).

0o

2. If many terms are deleted -~ i1f only a few terms of higher than
first degree are retained - use the reduced model for data smoothing,
interpolation, and limited extrapolation.

3. If only a few terms are deleted - if more than a few terms of
higher than first degree are retained - use the reduced model for data
smoothing only, Additional cobservations are needed for predictions at
points other than those already observed.
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APPENDIX A

SYMBOLS

FORTRAN Mathematical
symbol
I i
IT €
J i
K k
KG £
L L
LTH 28
il m
MIAU m.
N n
NE N,
MP
p
LGMH g-h
PHI Oy
PSI wk
THETA 61
TAU T
My Hitm
ik
a

Subscfipt
Number of
Subscript
Subscript
Number of
Subscript
Number of
Subscript

Number of

on treatments

treatments

on ordered mean squares
on independen£ variables
independent wvariables

on parameter §

values of ¢

on parameter 1

values of T

Subscript on experiments

Number of experiments

Number of mean squares pooled initially
Experinment contains 2g-h treatments
Exponential parameters, k=1, . . ., g
First degree parameters, k =1, . , ., g
Scale paramete}s, B=1, . . ., Re
Exponential parameter, m = 1, , ., ,, m

Population mean for i

of eg

Value of k
ment, F
periment
its lowe

Nominal si

T

th treatment, gth value

and mt value of

Tm

th independent variable at ith treat-
or two level fraectional factorial ex-
§; at its upper level, xj, = 1; at

r level, x4 = -1,

gnificance level of preliminary test



FORTRAN
name

KF

41
Mathematical
symbol
G g Nominal dignificance level of final test

Column number of U, table associated with
specified Op

Column number of Uj table associated with
specified ag
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APPENDIX B

PROGRAM POOLES

Lo~ DECLAPATIGNS, CUNSTANTS, PDPULATICN MEANS, AND STRATEGY

DIMENS ION FEMARK( 14)y ALPHA(L 1)y TB(64,100, PHI{3),
1PSI(8), THETAIBL), TAULGEYy YMULLZ2B,646), RN(64) IND{G6GYy Z(64),
2ZERSG{L28,646)y ERSQSQUL2B,6,6)y TRIQGMX{O 46}, AVERSGLL46),
AVESUMX (646, AVYVESQ(G,0)y DELI(R)

COMMON KKy YOBS{256), Bi256}

CATA {ALPHA(L )y I=1,113/0.001 304002400754 00 0140e025,;NeN530410,
1242590503075, Le C/

DATA ({TBLYsddpd=2elDd el =1424) /0005003000300 ,DeD, FJeT3NaDpDeDy e
1)@.0,20000011099999,1-99997g1-99986'1¢99917|1-99637,1-987791 «323,1
2-706,1;382;2-9976,2-9960,209904'2-9809,2-95192\@04.2-&06;2.527;2-0
3&0111688’3-97013¢9&2;30925.3087013-760,3-625,3.412120949,2i395:109
461,@-887,40845,4-758,4.65;4044,4-21:3-89y3-287,2-658’2¢184'5074|5-
563’504615-31,4-99,4-6814-28,3-57g20893’2-371|b05116-33'6-[1,5;6?15
6045!5u99c4-6113-83,3-11!2-5477‘2016O9616-65p603515-88,5-44,4-91,4-
706,3-29,2-6@,?-819?-52,7010:6-78:6-25|50?5950171402713-451208218!3
84;8-011?0531?-17|b-5916-03,5-41,4045,3~60,2095,8-82'8-44'T¢95,?-53
9,&-89|b-ZB;5-0194-0293-74;}a07¢902698-84,8033;703?'7013:655915081j
A4.77,3q37g3-1?,Qoﬁ?|9-21,8-68|8-16:7037.6¢?l15-9914-9213-99l3'27l1
BQ~05’9-55,6-951B-42|7059g6-91lbtl5:5-05y4-1013l37:10-49;9.8619-201
(el s T ol Ty TadT 160301 5a1T54e2093046410aT2510314,9+43,8483,T296,7T23
D|6044,5-29,4030,3.55,11031110040,9-64,9-00'8912;7.38,605?15-401403
59y3063’11028'10064:9-84;9-lTQB-ZBgTOSZ,ﬁang5-59,4-“8,307@,1105311
FD-Bﬁy19.0319-34,8.43:?-65;6.8115-6014056r3-77’11076'11-07,13.22,9.
651,3.58,7.78,b-Q2,5.69,4.64,3-84.11-98,11.28,19-40,9.6?,8.72,?.90,
H7-03'b 78’4 7113093:1&‘19!11048910'58 Ge 8318 86 e 02 [ 1315'87!4'7
10,3496,12039711468y104701999,855,8, 13472315495, 4085,4e02,12458,
JlL+87y 13.93'1q.14 Gel248:249T733,6a03,4+92,4.08/

DATA {(TB(I'J),J=1,10'f1=25!47'/12t76712-05111010110029,902318.34'
17-42,6111,4-9314c14112093:12022!11026!1004399¢34!8'44f7‘51!6'18?5‘
234”1"19[ 13-')9; 12' 381 11"01'10056|9I044'8l54y?- ﬁD,étZBQBO 10’4.24' 13.2
34!12.53!11»55110-6819-5418063170639603215016’4030,13-39,12-68,11-6
48,100?5,9-64,8u7217-76:6038,5022!4-35!13-53|12-82r11080|10088;9i74
5,3-81,7083p6-44,5-28;4n40113-67.12-96111091|10098,9-8358-8977o90g6
6»5395-33,4-45,13080)13.09|12001!1100779l91'8097'7-97.6v56,5t38’4‘5
70,13-93fl3o21,12-10,11.16;9-99,9-9@,3004|506235-43;4-54;14005’1303

2;12-19'11025'igtg7y9011,Bcllqﬁfﬁg|5048’4053,14-17113043112027:11-
934[10-15;9-18,B-l?pbo?4y5-53’4062914-29:13053112-35311-43,10-22’90
A25,8.23,6.80,5.58,4-66,14-41,13:631120&3,11-51110-291903178-291608
85,5.6314.73:14053113073,12-51111-59'10-36'9-37,803516090y5-6714074
C,14-64;13-32112-59;11-57,10-43:9-43;3-41f6095'5071!q'78|14075,13'q

Ly 1267321075110 5019049380 4606099 45T 51 %a824+14e85114eD0912.75411,

ﬁ83'10057.9-55,3.51!7-03,5.?9,408&,14095,14009|12-83,11-90:10964,9.
F61,8-56,7007;5¢83,4.90,15005,lﬁo17912-90111-97!10070l9'57!8-61!7'1
61,5.87,4094315-15,14-25.12097,12004110075190721806697015f5.91|Q-98
Hy 15024514335 13e054124 11013282 +Fe77T18¢T1l3T41915e954501y15:33, 1444
10s13+412,12» 18,10e8819e¢8218e7637e2355069915¢04315e42314+4T513:419,12«
JiSs10e 9495871 8e8Lly 727,603,507/

CATA(LTB T 3002 J=1,10)31=48,564)715+50, 14-54,13.26,12-32111.00 Fe92,



18-85,703L’6-3715-13'15.58114.66'13-32!12-33111-36,9-97,8039,?.35,6
2. ll, So 13, 15.66, 1‘{-60, 13-38!12.44’11-11!10002,8093, 7- 39,601‘!,5-1691
357391 4eT24 13044y 12503 11el6910e0T48Be9737043,36elTy5:1941548)y14+79
4313697, 12¢56911e219 10012190l 07047 1602055¢22915087 314%4085,1356,12
56293110209 1C0al?39a003 70501164231 5¢25419¢93314e91¢13a625312468911430,41
6?‘.21’9!}91 7.55' 6126’5.). 28! 15.99,14‘97’13067112' 7.5’1 1036'10025,(}.139
1758, 602T1 50631, 16605,15e¢033 13729278yl lat 09100294917 3T726336+32,
B e384 166111156109 13e¢T7312e¢835110b4,310334922),TebT30e353%37,216.17
0, 156163136829 12488) 1148317037190 2537a70160389540316623,15422,173.
ABET312293,5 1152, 10041,%029,7e73,604135043,16629915028413492,5129791
Eleb0s 100453903317 eT610e80935e46 3160343 19¢34413.974313:01411460,10.49
C,QQ$7,Tc79,604?'5048,16039|15-4}114002913-95111064)13053|9-4117582
Ds6e503 500 16eh4y 15846,14a06513009,3114867,10457,9:4997+857645345452
ﬁ'O.Q,D.Q,UcOrO-O,O-O|00010-3700010¢0’010f

FEADI5,4800) {REMAFK{I[)I=1,414)

WRITF {6,801 (REMARK({ID},I=1,s14)
FEAD(S4+824) LOMHy NE

[T= 2%%f GMH

1TMl= IT-1

ITM2 = 17-=-2

FIT= IT

FNE= NE

IF (NE«FQeD)Y FNT = 1.0

FNEM] = FMS - [0

FEAD (548251 KGe{PSTIK) yK=1l+KG)
WRITE {(6,842) {PSHIK), K=1,K4G)

FEAD (5,829) KGy{PHI{K) yK=1,KG)
WRITE (6,843) (PHIIK)y, K=14KG)

FEAD (5,825) KG,(DELIK),, K=1l,KG} ’
WEITE (64844) (DELIK), K=1,KG)
FEAN{S,825) LTHy {THETA{L)Y, L=1,LTH}
PEADES4825) MTAUy (TAUIM),y, M=1,MTAU}
fp= 2%#K;

FIP = [P

IPP1= [P + 1

FENBIP FNE*FIP

FEMLIP FNEML = FIP

DO 49 M=1,MTAU

Ny 48 L=1yLTH

bo 20 I=1,1P

A= 1.0

C = 0.2

GO 15 K=1,KG

KMl= K-=1

J= 2%kKM]

AX = AND(IUI=-1),4)

XTI = 2TARS{KMLI,AX)-1

DEBUG 1, Ky X1

A= A+PST(K ¥IEX]

C = € + PHIIKI={X]I-DELIK) %2
15 CONTINUE

YMUI Ty LyM) = THETA(LIX{A+TAULIMIREXP(~C))

DEQUG Iy Ly My, ¥MU{I,,L M)
20 CONTINUE



44

4B ¢ ONT [NUE
4% CONTINUE

50 FCAD (5,824) MP 4 KP,KF
MPPl = MP+])
CALL SAND (XS)
0o g M= MTAL
DT SR L=1,LTH
g 97 [=1,1P
[PSQ(I!L!M]'—' Nel
PREQSA{T Ly MI= D80
97 CONTINUE
98 CONTINUE
99 CONT INUE

2o~ SEMULATIONS AKND MODEL FITTIMG

e Ralel

DD 695 M=14NFE
TF (NEERQeM) GO TC 202
0O 213 I=1,17
Call RANCIRNI(I))
DEBUG 1y BN{D)
213 CCOMTINUE
CO 215 [=1,1T,2
F= SQRTI=ZD*ALOG(RN{T )
'z 628318534FPN{T+])
FN{1Y= C*COSLD)
DERUG RN
FRIEI+1)= E*5IN(D)
LDEBUG RNLUI+1)
215 CONTINUE
GCC TO 201
200 DO 299 1=1,17
FN{LY = 0.0
209 CONTINUE
201 DD 690 M=1,MTAU
N0 682 L=1sLTH
KK= LGMH
TEF(KG «50e 4) GO TO 204
TE{KG «FQe 5¥ GC TO 225
TF(KG «EQe &)Y GO TO 2026
IF{XG «FQs 7) GO TO 207
IF(KG «EQes 8B)Y GO TQ 208

204 DO 214 I=1417
YOBS{I)= YMU(I,LyM) +RN(I)
DEBUG Y({8S (1)
214 CONTINUE
CALL YATES
GC T 322

275 YOBS( 1) YMUC 1,1y MI+RNT 1D

YOBSE 2) = ¥YMUL 2,L,M¥+RNL 29
YOBSE 3} = yMU{19,Ls MI+RN{ 3)
YOBSL 4) = YMU(20,L.MI+RN( 4]}
YOBS( 5Y = YMULZL,LyMI4RNL S



250

276

269

207

45

¥YOpsS({ 6) = YMU{ZZQL,M,"RN( 6)
YORS{ 7) = YMUL 7,LsM¥+RN( T)
YORS{ 8) = YMUL 8,L,MY+RNIL 8)
YOBSE 9) = YMU(Z5,Ls MI+RN( )
YORS(LDY = YMU{ 26, LeMISRNIID)
YORSEL11r = YMU{LLl LeMY4RN(11)
YORSIL12) = YMU(12,LMI+RN(L12)
YOBSI1I3) = YMU(13,LeMI4RN{13)
YOAS({14) = YMU(Ll4,L, MI+RN(1%)
YOBSELS)Y = YMU(3L,LyM)+RNL15)
YOBS{16) = ¥MU{3Z,L,MI+RNI1&)
00 299 1=1,17

PEBUG YOBSE )
CONT INUE
CALL YATES

GO TG 300
YORSE 1) = YMUL 1,L,My+RN{ 1}
YOBSL 2) = YMU({34,L, MI+RN{ 2}
YOBS{ 3) = YMU{19,L,MI+BN{ 3)
YORS 4) = YMU{S2sL,MI+RN( 4]}
YOBSt S) = YMULIS3,L,MI+RNL 5)
YOBSI{ &) = YMU(224LsMI+RNT 6)
YOBS(E 7Y = YMU(39,L,MI+RNL T}
YORS{ 8) = ¥YMU({ B,LsMI+RN( 8)
YOBSE 91 = YMU(STL,MI4RN( )
YOBS{1D) = YMU(26,L,MI4+RNL1D)
YOBSE1Ll)Y = YMU{43,L,M +RN{11)
YOBS(L12Y = YMU{L2sLyMI+RN(12)
YORS(LA)Y = YHU(L1I3 4Ly MIHRN(13)
YOBS{14) = YMUl464L,MI+RN{14)
YORS{15) = YMUULILLyeMI+RN(1S)
"YDBS{16F = YMU(64,.0,M)+RN{16)
Do 260 I=1,IT

GERUG YCBS(I)
CIINT INUE
CALL YATES

GC TO 300

Yy0ast 1) = ¥YMUI 1y Ly MI4RN( 1)
YOBSE 2y = YMU( 98y LyMIeRN( 2)
yoBSE 3) = ¥YMU( 83,1 4M¥+RN{ 3}
YOBSE 4) = YMUL S52,L,MI+RN{ &)
YOBSE 5) = YMU(L S3,LsMI+RN( 5)
YOBRSI &) = YMUL B&,L,MI+RN{ &)
YOABRS( 7)Y = YMULL1O3,L¢M}+RN{ 7)
YOBS{ 8) = YMUA 8yLsMIERN( 8)
YOBS( 9) = YMU{121l,LsM¥I+RN{ 9)
YOBRS(LO) = YMU( 264L¢eMI+RN(10)
YOBS{LIL) = YMU({ 43,L,MI+AN{L1])
YOBS{12) = YMU( 76,LyMI+RN[12)
YOBS(13) = YMU({ TT,LyMI+EN{L3?
YORS{14) = YMU( 46sLyMI+RN{14)
YORS{15) = YMU{ 31l,L,MI+RN{15)
YOBS{16) = YMULL284LMI+RN(106}
DO 270 I=1,IT



OOy

oY ™

279

208

280

ang

311

312

313

46

DEBUG vnoBS(I)

CONT INUE
CALL YATES

GU TO 390
YOBSE 1) = YMUL  1,L,M)I+RN{ 1)
YOBS( 2) = YMUI2265L yMI+RNE 2)
YOBS[ 3) = YMUI211,L,MI+RN{ 3)
YOBS{ 4) = YMUL S52,L,M)+RNL 4)
YOBS{ 5) = YMU{181,L,M)+RN( 5)
YOBS( 6) = YMU[ B6&,LyMI+RN( 6)
YOBSE 7) = YMUIL035L,MI+RN( T)
YOBS{ 8) = YMUL13&L,MI+RN{ 8)
YUBS( 9) = YMU(LIZ214L MI+RN{ 9)
YOBSI1I) = YMU(154,LsMI+RN(LD)
YOBSULL1) = YMU{LTl,L,MI+RN(LL)
YOBS({12) = YMUL Té&,LyMI+RN{12}
YOBS{L13) = YMU(205,L,MI+BN{13)
YOBS{14) = YMU{ 46,L MI+RN(14)
YOBS(15) = YMU( 31,LsMI+RN(15)
YOBS(16) = YMU{256,L,MI+RN(16)

DC 280 [=1,107
DEBUG YOBS(I)
COMY INMUE
CALL YATES

GG To 3922

Ja= CONSTRUCTICN AND OROFRING CF MEAN SQUARES

DO 399 I=1,I7

INO(I¥= 1

ZEy= BOI+LpBLI+DI/FIT
B(I) = B{1) / FIT

DEBUG B(D)

CONTINUE

IF (MPLEQe.D) GO TO 500

po 313 J=1,1TM2

TEST= Z{1TM1)

IN= 1TM]

D0 312 NA=J,1THM2
IF(TEST-2(NAY) 312,312,311
TEST = Z{NA)

IN= NA

CONTY INUE

ITEM= INDCIND

TEM= Z(IN)

INDCINDI= INDUJ)D

ZUINY= 200

INDLJY= ITEM

Zldr = TEM

DEBUG IND{J)»Z(Jd)4BCITEM)
CONT INUE

DEBUG INDI15),Z2(15),B(15)

4o~ DELETION DOF TERMS



ey O

%415

416

411
418

419

421

421

520

540

546

550
551

47

JH= MPP1

TEM= 3.0

CO 415 Jd=1,MP

[NDX = IND{JY+]

B{INDXY= 0.0

TEM= TEM + J(J}

DERBUG JN, INDX,B{ INDX)y TEM
CONTINUE )

TF (KFeFQell) GO TO 532D
DO 419 J=MPPL, ITMI1

FJaM = 4N

TEST = FJNHZ{ /UTEMFZLIN)
If (KPeSQaell) GC TO 417

IF (YEST=TH(JIN,KP 1) 41E44106,417
TEM = TEM + I(4)

ITNDX = INDUJI+]

JN = JN+]

ODERUG JINy INDXyBIINDX ) TEM
GO TQ 419

IF(TEST - TRIJIN,KF)) 418,418,427
INDX = IND{J)+1

BLINDX) = Da0

CEBUG INDXs BOINDXI,TEM
CONT INUE

JETA = 1TM1

GO TO 592

JETA = J=~1

00 421 J=JETA,IT

INOY = IND(JOY+1

PEBUG INOX, BOINDX)

CONT INUF

5= PREDICTIONS

KK = KG

DEBUG JETA

IF (KG «EQs 4) GO TO 540
IF {(KG »FQe 5} GO TQ 559
[F {KG «EQe 6 GO TD 569
IF {KG «S9« T) GO T3 579
IF (KG «EGe 8) GO TO 58D
B0 546 [=1,1P

1pPIMI = IPPL-I

YNBS(Iy = B(IPPIMD)
DEBUG YORSII)

CONT INUE

CALL YATES

GO 79 690

pg 551 I=1,20

¥YOBS(EY = 0.0

YOBSI13) = Bil4)
YOBS(1l4) = B{l3)
YOBS{15F = 8(16)
Yaas{le) = B(15)



552

557

560

561

562

5617

510
571

572

517

580
581

582

587

pD 552 [=21
IPPIMI = 33
YO8S(1) = B
DO 557 I=1,
DEBUG YOS
CONTINUE
CALL YATES
GO TO 6920

0O 561 I=1452

YOBS{IY = 02

YOBRS(31Y = B(13)
YOBS(32) = B(1l4)
YOBS{47Y = 8B{l6}
YoBsS{48) = B{15}

DO 562 1=53,64
1PPIMI = 65-1
YOBS(I) = BCIPPIMD)
PO 567 I=1,(P

OEBUG YOBS(I)
CONTINUE

CALL YATES

¢O TO 600

0o 571 I=1,117

YOBSUI} = D0

YoBSi&4Y = BO12)
YyaRs(9sy = B{1l3)
Yops{96) = Bilad
YOBS(1L1)= B(1l6)

Yoasiilz2r= B(15?

DO 572 1=118.128
IPPIMI = 129-1
YOBS(1)Y = BUIPPLIMI)
DO 57T I=1,1P
DEBUG YOBS (1)

CONT INUE

CALL YATES

GO TO 629

D0 581 [=14+245

YOBS{IY = ZeO

¥yoBS{128) = Bi{8)
YOBS(192) = B(12)
YOBRS{223Y = B(13)
YOBS(224) = B{1l4)
YOBS(239) = 8116}
YOBRS{242) = BIL1S)

DD 582 1=246,256
IPPIMI = 257~1
YOBS(1) = B(IPPIMI}
YOBS(249Y = D.0

DG 587 I=1.1P
DEBUG YOBS(I)

CONT INUE

CALL YATES



IaNale

aNaRakel

(RN

600D

609
6890
699

699

740

750

780
799

49

Gu To 620

6e- ACCUMULATION COF ERRDORS

CO 639 1=1,1P

1PPIMT = IPPL-1

DERUG BCIPPIMI)

TeEM= {H{IPPLMI) = YMU(IgL M) )I¥EXZ
ERSQUI4LyM) = ERSQUESLsM) + TEWM
ERSQOSU(IsLaMI= ERSUSQUTsL M) + TEMx% 2
DERUG ML I,ERSQUI,L M}

CONTINUE

CONT INUE

CONT INUE

IF (MT +EQe 2V) GO TO 727
CONTINUE

7o~ DETERMINATION OF MAXIMUM AND MFAN SQUARED ERRORS

D 799 M=14MTAU
00 787 L=1,LTH

C = 7370

D = 20

F= Qa0

F= Ja72

DQ TH0 1I=1,.1P

C = AMAXLIC,ERSQETI.L M)

D= D + ERSQUIsLeM)

TEM= FRSQSWII,LeMI- (fERSQ‘I:L,M))**Zl/FNE
F = AMAXL(E,TEM)

¥

£E = F + TEM

CONT INUE

ERSQMX {LsM) = C/FNE

AVERSQ(LsM) = D/FENBIP

IF (NE «EQe O) GD TO 780

VESQGMX (LyM)= S/FNEML

AVVESQ(LsMI= FIFEMLIP

DEBUG EasqutL.M),AVEPSQIL.M),VESQMXtL MYy AVVESQIL 4 M)
CONYINUE

C ONT INUT

Be= QUTPUT

KWRITE {6,830) !TtNE,KG]MP;ALPHA(KP),ALPHA(KF'

WRITE (6,:832) (TAU[MIsM=1,MTALU)

WRITE (6,833}

WRITE (6,831}

KRITE (645834} ‘THETA{L’,‘ERSQMX(L,”"M=1'MTAU'lL=19LTH]
WRITE {6,835)

WRITE {(64834) ‘THETA(L),(AVERSQ{L'H’,H=1,MTAUI1L=1,LTH,
WRITE (6,836)

HRITE {(64834) ‘THETA‘L’,(VESQMX(L!M)!M=11MTAU]3L=11LTH)
WRITE(6,837)

wWRITE(6,834) (THETA(L‘|IAVVESQ(L3M1’N=1!MTAU'1L“IILTH)
GO TO 50



50

830 FORMAT (13A6,42)

821 FORMAT (1H1+10Xs12A64A2/7)

Bz24 FOPMAT (315)

B25 FOPMAT (15,8F5.0)

8390 FORMAT [1HL1e3X4HIT =15,5Xy4HNE =T15,5X 44HKG =[5,6X14HMP =15,5X,
186HALPHAP =F&.3, 5X8HALPHAF =Fé.3//)

831 FORMAT {1HD,20X,6HERSQMX/ /)

832 FORMAT {(1HO,4HTAU=6F13.2//)

833 FURMAT (LHDI,SHTHETAZ /)

834 FORMAT {Fbe296F14ett)

B35 FORMAT (LHD,20X,6HAVERSQ//)

836 FORMAT [1HD,20X,6HVESQMX/ /)

837 FORMAT (LM, 22X,6HAVVESQ//)

B42 FOEMAT [1HO,4HPSI=BE]l4.4)

843 FORMAT {1HI4HPHI=8E L4 e4)

B44 FORMAT {1HD,4HDEL =85 14.4)
END



906

207
908

q09

sl

SUBROUTINE YATES
Ge= YATES METHOD SUBRDUTINE

COMMON KKy Y1256, B(256)
Il = 2%%KK

11oB2 = 11/2

KEKML = KK-1

DD 928 K=1,KKM1

NO 906 I=1,11,2

1PID2 = (1+1)/2
B{IP1D2) = Y{I+1)+¥ (1)
LL = IPlD2+11IDBZ
BILL)Y = ¥{l+1)=Y(1])

00 927 I=1,11

Y{I1y = 8{(1)

CONTINUE

LD 979 I=1,11,2

IP1D2 = (I+13/2
BOIPIDZ2Y = Y{I+1d+Y{ D)
L = IPlo2+lIDAaz

B{LLY = Y{I+D)=¥{1)
CONT INMUE

RETURN

END



Tal)=

ThtTA

Je 50
0.25
Cal3

Je 50
Ded5
Ot 3

OeS0
De25
Tel3

PRN-R)
Je 25
Cs13

Te

NelGTIE+DL
Jel6T35+731
NDela73E+01

JeG296F+00
QeH256E+ D)
DaH256E+D]

Do 3585001
Je35455+01
F+35655+01

Yell2lE+71
Call21FE+01
Jel121S+01

e 59

ZRSOMX

Del6730+21
De 16732401
Cal16T3E+01

AVERSQ
0=82565+00
DeB256%+ 3D
(e 82565+0D

VESQMX
0« 35855+ 01
Dea3585E+01
De3585F 401

AyVESQ
TJell2lE+231

Osll21iE401
011215401

52

AFPENDIX C

ILLUSTRATIVE OUTPUT - POOLES

100

Ve 1673401}
De16T35401
Os16T3E+0L

Ou8256E+00
DeB256E+20
Je8256E+00

043585E+01
0.3585E401
N.3585E401

Ds1121E401
Qel121E+014
0s1121E+01

1+50

Del6T3E401

Je1673F+01
0.16736+91

0825 6E+00
D«B8256E+00
D«8256E+00

035855401
0e3585E+01
D+35855+D1

Qell21EeD]
Oel1i21E+01
Del121E+01

DelbT3E+01L
Qe l&6T3E+0L

0e16736+01

0.8256%+00
D.B256E+0D

82565403

3+35855+31
0+35B55 401
T235855+01

T+ 1121E+0}
Os1121E401
Oe1121E471

Nel6T3E+DUL
Tal6T3E+01
Ja16T730+21

N28256C+00
De82565+00
N+ 8256F+00

Ne3585E+01
N+3585E+7)
N e35B5E+401

D«1121E+721
Je1121544}
Tell2lh+C1
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APPENDIX D

PROGRAM MODEL

le= DECLARATIONS AND INPULT

ODIMENS ION REMARK{1l4)s PSI(8)e #HILB) ¢ THETALG), TAU{O) ALPHAL L L),
JYMUIZ964006), BIASI29646+6)y BILM(LlGs6,0)y DELIB)

COFMON KK+ YOBSE296). BL25&)

OATA (ALPHALET ) T=2lell) /0. 001|0000£v0-005»0-013000£513-05 01210,

102250250, 0879100/

REBCESLECC) (REMARK{([D)sl=lsl%id
WRITE(6+801) (REMARK{L}+I=1414)
REALC(+E24) LGHME. NE

ITT= e¥¥LiGMKA

F11= T

READ (568250 KGWIPSTIK)+K=14KGD
WRITE (€+4842) LPS1iK): K=14KG)

READ (5482490 KGolPHIIKI4K=1eKi)
WRITE 1&E+843) {PHIIKYs K=14KG)

READG (S5e825) KGelDEL(K)y Kz=loKb)
WRITE [&E+E844) LDELIK)s K=1.KE)

WEAL (5625 LTHe (THEFA{LI . L=14LTH)
REALLS+825) MTAU, (TAU(M) . K=1,MTAW}
IP= Z%¥KG

FIfg = 1P

IFFl= [P + 1}

2e= MOLEL AMD FITTING

NG 49 k=l.kTAU

D0 48 L=)+LTH

na 20 I=s1.1P

A= 1.0

C = 0.0

0C 19 K=1+KE6

KMI= K=1

J= ZEFKM]

AX = ANCULi=1}ed}

XE = Z#JARS{KMlL<AX)I~]
A= A#PSI{KI*X]

C =0 + PRI{KI*IXI=-DELIK) )¥%E
CONTINUE

YMLUETeLod) = THETA(LI®(A+TAULMISEXEL(-C))

BIEAS(Lsl o) = 0.0
COMTINUE

LONT INUE

CONTIMLE

REAT (5.524) MPKP.KF

S5a= PHRELEICT IONS

00 €90 #=1.MTAU
DO &80 L=]4iTH



KK= LiGME

IFIKG «FCs 4) GG TD 204
(FIKG «FEQe 5) GO TU 205
LFIKG oFae &) GO TO. 2C6
[FIKG «FCe T3 GO TG 207
IFIKG +E0. H) GO TO 2C8

204 DO 214 121417
YEBSL )= YMULT L)
24 CONTINUE
CALL YATES
00 349 =117
BlIY = BILIM/FIT
BILM{LatoeMd = BILI)
345 COMINLE

KK = KG

00 46 (=1.1FP

[PFIMT = IPPLI-I

YCES(TD) = BLIPPIMI)
S48 CCGATINLUE

CALL YATES

GG TG &06C

205 Yo8StL 1) YMU{ J.L+¥)

YOESE ) = YRUL 24l e M)
YOBSE 3) = YMUL19+LeM)
YOBST 43 = YRU(ZOwLeM)
YOBS(E 5) = YMUGZLeLo M)
YORSL 6) = YRU(ZZsLo M)
YOBSE 73 = YMUL Tah oM}
YORST B) = YMUL 8eloM)
YOESL 93 = YMUL(Z25«1L+ M)
YOBRS(IQ) = YMUG26.L4¥)
YOBS(YIT: = YMLEL)ebeM)
YORSLAZ) = YPL{12.L M)
YOBSE13) = YMUL )3 ek o)
YOBS{14) = YMUCLG Lo M)
YOBS(19) = YMUT 31 <L M)

YORS(16) = YMU(32.LeM)
CALL YATES
R 359 [I=1.17
B{J) = BLIMFIT
RILE(T<LeM) = B(D)
355 COATINUE
KK = K&
N1 551 I=1.20
561 YORS(LIE) = DG

YORS{L13) = BL14)
Yesi14) = A1)
YORS(1S) = nilé)
YOBS{1lé6) = BL15)

00 5497 T=21432
I1PPIMTI = 33~1

5687 Yaes{l) = B{IPPINMT)
CALL YATES



2086

1469

561

95¢2

FTY

GG TG 600

YOopRst 1)
YORSE 2)
YORS( 3)
YORS( 4)
YORStE 5)
YOrs( &)
YORST 1)
YOBS(L &)
YOBSL 4)
YORS{14):
yOBS(11)
YORS(12)
YGBESL13)
YORS{14)
YGESU1%)
YRRS{162
CALL YATES

[T T T TS O AN T S O T L

[ LI [}

YMUE Lok oK)
YMUC 34l o M)
YMUL IS sl o M)
YMLU{E2 b o M}
YMULEZ+La¥)
YMU(Z2eL9M)
YMUL 3G el o M)
YRUL BeLM)
YMUL 5T el oM}
YMUL 20 oL o)
YMUT43 L. M)
YMUC1ZeL o M)
YMU{1I3,L 0 M)
LI T-TINLE
YMULI3l+Lo M)
YMLi(EG oL e M)

20 369 I=1410T
01 = BUBM/AFET
BiirdllsLeMi= B(T)

CONT INUE

KK = K@

o) S61 I=1.%2
YOCRSCY) = Qa0
YDESU33) = Bl13)
YORS132) = Bll4a)
YOBS(47) = Bll6)
YOCFESL4l) = BL15)

NG 567 [=53.64%
[PFIM]L = é5=I
YORSLT) = BEIPPIMIY

CALL YATES
&G TO 600

YOBSUL 1)
YOeSL 2)
YCBSI 3
YORSL 4)
YOBRS{ 51
YCas{ &)
YOBSE 1)
Yagste 8)
YGASt S)
YORS(10)
vyoBsS{11l)
vOBRSi 122
YOBRS(13)
yoBsS{14)
YyGasiis)
YOBSi1c)
CALL YATES

#Hohouou

TR VI I I TR A T (I ]

YMUd
YMUu(
yMU
YMU(

Lol o M)
SBel «M)
Bl.LeM)
S24LeM)
YMUL 53¢l M)
YMUL bbsl eM}
YMU(1Q3sLeM)
YMUL Gek o M)
YMUEL121.L M)
YMU( 26+L M)
YMU( 43.L4M)
YRUL Toel M)
YRUL TT.Lo M)
YMUL Géel +MD
YMUL 3lel M)
YMUL L2841 + M)

NG 3719 i=1.1T7
AalYY = 8{1)/FIT
Bildi{TebeMd= ALT)

85



ENA)

541

his

208

5687

600

609

CONT INGF

KK = KG

(3G 571 [=1.
YORS(E) = O
YOPS(64}

YCHS5(95)

YLES(94)

YORSLMIY)
YORSt112)=

no 8172 1=11
(PPIMI = 12
YORSETI) = 8
CALL YATES

GG TO &0C

[N I I}

YGast 1)
YORSL Z)
Yiesd 3)
YCRSL 4)
YOBRS( 5
YOBRSl &)
YOBRSL 714
YcastL 8)
YORSL 93
YORSL 10
YOBSIE1L)
YCRS{1¢2)
Yoes(i3l)
YORSL 142
YORS{15)
YOBS{16)
faLL YATES
A0 389 I=1.
Atl)Y = Bil)
BILM{Tol oM}
CCNTINUE

KK = Ki

Nno 5S8) I=1l.
YOosS(iY = ¢©
YORSL1£8)
YOBSILSZ)
YOPS(223)
YERS{Z7224)
YORS¢239)
YORS{Z240)
00 587 1=24
[PPIMI = 25
YoBSLE)Y = B
YGRS 249) =
CALL YATES

GU TD €0C

RO MW DWW AR AN NN

H

H

[ T

DO 609 I=1}
IFEINL = IF
BIASINebot)
COMT INUE

117

-0
B{12)
8(13)
Bliad
8(16)
8LE15)
HelZ8
—1
(1PPIM])

YMUL lel «M)}
YMUCZZ260eL o+ M)
YML{c1lel o}
YMUL 52+ M)
YMULitiisL o M)
YHMUE S6ek o M)
YHU(IC34L o M)
YMUE 1360k o M)
YHL(T2L1al oM}
YMU{LIS420 o M)
YMU{IT1sL oM}
YMUL TEelL M)
YMUCZ2O05,L M)
YHUL 4640 <MD
YMUL 31ls0L M)
YMU{256¢L oM}

It
{FIT
= B¢

745

0
Bl8)
nelz)
B80L13)
Bl i4)
B8ll1é)
Bi15)
&+2586
1=1
LIPPIMI
0.0

v 1P
fl-1

= BIIPPIMII=-YMUIT+L M)

56



¢
¢
¢

57

H48C CONTINUE
6L CONTINUE

400
801
824
825
83cC

iz
dis
839
84
b4l
4272
843
Bad4

da= OLTPUT

WRITE
wRITE
WRITE
wRITE
WRITF
wRITF
“RITE
wRITE
WRITE
whkiTE
FORMAT
FORMAT
FORMAT
FORMATY
FORMAT

16830) IToNEeKG «sMF o ALPHALRPIJALPHALKF)
{beB832) (TAU{MIM=] .#TALI
(E.838)
(683%) ({THETAIL) ol o {YMULLs LMY oB=1 ) MTAUY pi=LIP},L=1yLTH}
(68320 (TAUIM) M=) ,MTALD
(e840
§6+839) {UTHETA(L) oL o (BILMIT eLoM) oM=L o MTAUD y1=11T)si=1piLTH)
(16832) (VALIMIN=] MTAU)
e84}
$6:839) CLTHETAILI T (BUASIL sLoMIaM=LloMTAUY [=21,1P)sL=1.LTH)
{i3A& 02}
{3r1el0Xel138B.A2//)
i3i5)
(IS.85.0)
{ 1D 3X o AHIT =15+5X «9HNE 2545 X e4aHKG =L 996X s4HMP =15,:5X,

VBhALPHAP =F6eB¢5XeBHALPHAF =F6e3//)

FOSMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAY
FORMAT
FORMAY
EnL

{IFl+anTAU=6F132¢/1}

(1RO ¢ SHTHETALX s lHE o« 3 X9 DHYNL/ /)
(10 F4 009 lbaskElaadn)d
(AFr05HTRETAW L X slHL o3 X+ 4HBLLM/ /)
(1FGeSHTHETA AN o 1HI a3 X 4HBLASY /)
(1FCoaHPSI=BEJ4e%)
{1R0+4HPRI=BEL4e4)
(lhO.éhDEL=&El¢-4!
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907
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S90S
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SUBRNUTINE YATES
COCMMON KK oYL 256)B(2586)
[T = 2%%KK

1ICRe = T1/2

KEME = KK=1]

NO SCH K=l «KKM]

00 S06 1=z1elle2

IP1L? = [1+11)/2
fLivlnz:y = ¥Y(I+))+Y([)
LL = IP1LC2+4]11ICABs

#Hill) = vil+}d=Y{])

N9 SC7T [=1411

Y{I) = BLL)

CCANTINUF

DO 909 i=lells2

[PICZ = (I+1¥/2
HUIF1ILZ) = YLI+1)+YI( 1)
LL = IPLCs+1[DBe

AlLL) = vYil+li=¥L1)
CONT INLE

RETURN

END
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TABLE 1, - SAMPLE FRACTILES FOR ORDER STATISTICS
FROM SAMPLES OF SIZE g

qj=1_i__g- _j=1’-":g
k| g
4 5 6 7 8

1 0.200 0.167 0.143 0.125 0.111
2 .400 .333 .286 .250 222
3 .600 300 4629 .375 .333
4 . 800 .667 .571 .500 LAh4
5 .833 714 ,625 .556
6 .857 . 750 667
7 .875 .778
8 .389




TABLE 1I. - VALUES OF wk

k g
4 5 6 7 8

1 | 1.00 { 1.00 | 1.00 | 1.00 | 1.00
2 .65 .67 .72 .75 .76
3 .41 .45 .54 .58 .63
4 .20 .28 .39 At 47
5 14 .26 .32 .37
6 12 .20 .27
7 .10 .17
8 .07




TABLE III. - POINTS OF INFLECTION (EQ. (24))

[5k = 1]

k g
4 5 6 7 8

1 0.29 0.29 0.29 0.29 0.29
2 -12 . .14 ) n17 . .18 -19
3 "-10 --05 104 -07 011
4 _.58 ".34 -013 _-07 --03
5 "'-089 -039 _.25 "-16
6 -1.04 - =.58 ~-.36
7 ~1.24 ~.71
8 ~-1.67

Y




TABLE IV.

— GENERATORS OF EXPERIMENT PLANS

Full
replicate
estimable
contrasts

Defining contrast generators

4
0]

N O

X1

X1X2

X33
XZX3
X1 X2X3

X1X4
XXy
X X2%,

X3X4

X1 X3Xy
X9XqXy
X1X2X3X4

X2X3X4X5

X1X3%4Xe
XoX4X 4 X5

X1X2X4X7

X1X3%4Xg
X2X3X4X5

X1X2XqXg

X; Xp X, X7

Xy X3X4%g |
X2X3X4X5




TABLE V. - DEFINING CONTRASTS

X1X2X3X4X5 XGX') XB

g
5 6 7

Xy X % X,

XXX Xs 1 GRS | KReKXs | B3RS
¥

X KKK | XXX X | XXX X
R X KXo | X XXX X XXX
KKK XXX
KX KX X XXX
XX KeXy | XXgXeXy
X, XXeE, | XXX X
| X XX 5Xg
X, X, XsXg
X XX Xg
IR EEES
' X2X5X7X8
| X1XsX,%g




TABLE VI. ~ LEVELS OF INDEPENDENT . VARIABLES

rhalalr el e
PO A A g
4.11__1 14_1_1_._ 14.1._4_ 1_.11__1
TR AR Sy g
FETT TTAT A o
TETT A Ry

e
RO R g g

-1
1
=1
1




LRl o

o~ v L

1)

ab

ac
be
abe

abed

ae
be
abe

ce
ace
bce
abce

de
ade
bde
ahde

cde
acde
bede
abode

33
34
35
36

37
38
39
40

41
42
43
44

45
46
47
48

49
50
51
a2

53
54
55
56

37
58
59
&0

bl
62
63
64

i 65
af 66
bf &7
abf 68
cf 69
acf 70
bef 71
abef 72
df 73
adf 74
bdf 75
abdf 76
cdf 77
acdf 78
bedf 79
abedf a0
ef 81
aef a2
bef 83
abef 84
cef 85
acef 86
beaf 87
abecef 88
def a9
adef 50
bdef 51
abdef 92
cdef 93
acdef 94
bedef 95
abedef 96

TARLE VII. - YATES' ORDER OF TREATMENTS

g 97
ag 98
bg 99
abg 100
cg 101
acg 102
bcg 103
abcg 104
dg 105
adg 106
bdg 107
abdg 108
cdg 109
acdg 110
bedg 111
abedg 112
eg 113
aeg 114
beg 115
abeg 116
ceg 117
aceg 118
bceg 119
abceg 120
deg 121
adeg 122
bdeg 123
abdeg 124
cdeg 125
acdeg 126
bedeg 127
abcdeg 128

fg
afg
bfg
abfg

cfg
acfg
befg
abefg

dfg
adfg
bdfg
abdig

cdfg
acdfg
bedfg
abedfg

efg
aefg
befg
abefg

cefg
acefg
beefg
abeefg

defg
adefg
bdefg
sbdefg

cdefg
acdefg
bedefg
abedefg

129
130
131
132

133

134 ¢

135
136

137
138
139
140

141
142
143
144

145
146
147
148

149
150
151
152

153
154
155
156

157
158
159
140

h 161
ah 162
bh 163
abh 164
ch 165
ach 166
beh 167
abch 168
dh 169
adh 170
bdh 171
abdh 172
cdh 173
acdh 174
bedh 175
abedh 176
eh 177
ach 178
beh 179
abeh 130
ceh 181
aceh 182
bceh 183
abeeh 184
deh 185
adeh 186
bdeh 187
abdeh 188
cdeh 189
acdeh 190
bedeh 191
abcdeh 192

fh
afh
bfh
abfh

cth
acfh
befh
abcfh

dih
adfh
bdfh
abdfh

cdfh
acdfh
bedfh
abedfh

efh
aefh
befh
abefh

cefh
acefh
beefh
abcefh

defh
ade fh
bde fh
abdefh

cde fh

acdefh
bedefh
abede fh

193
194
195
136

197
138
159

200

201
202
203
204

205
206
207
208

209
210
211
212

213
214
215
216

217
218
719
270

221
222
223
224

gh
agh
bgh
abgh

cgh
acgh
begh
abegh

dgh

adgh
bdgh
abdg

edgh
acdgh
bedgh
abcdgh

egh
aegh
begh
abegh

cegh
acegh
beegh
abcegh

degh
adegh
bdegh
abdegh

cdegh
acdegh
bedegh

225
226
227
228

229
230
231
232

233
234
235
236

-237

238
135
240

241
242
243
244

243
246
247
248

249
250
2531
252

253
254
235

abcdegh 256

fgh
afgh
bfgh
ablgh

cfgh
acfgh
brofgh
abcfgh

4fgh
adfgh
bdfgh
abd fgh

cdfgh
acdfgh
bedfgh
abedfgh

efgh
aefgh
befgh
abefgh

cefgh
acefgh
beefgh
abcefgh

defgh

adefgh
bde fgh
abdefgh

cdefgh
acdefgh
becdefgh
abcdefgh



g 4

h 0
1 {1}y 8g 1
2 a Bl 2
b B 19
4av Bz 20
5 ¢ 53 21
# ac 813 22
7 be 821 7
8 abc G123 8
94 By 25
10 ad B14 26
11 bd B2y 11
12 abd  By24 12
13 cd Bag 13
14 acd B34 14
13 bed B34 31
16 abcd B1z34 32

Numbere in colums are

TABLE VIII.

5

1
{1 Bg
a Bl
be Bz
abe B2
ce By
ace B
be B23 ¥ E45
abe  Byp3t B3
de 84
ade By
bd Bz4+ 835
abd 8124+ 8135
cd B34 T825
acd 8134 6125
bede  Bggy *EBj
abede  B1p34 *+Eis

34
19
52

53
22
39

37
26
43
12

13
46
31
64

{13
af
be
abef

cef
ace
bef
abce

def
ade
bdf
abd

cd
acdf
bede

b
2
o
Bl
B2
812+ 856
B
B13+ 84
B2y + 645

8123t B1as* 8356 1 B2as

By

B14+ B35

824+ 835

Bi24+ B135+Bagp +Byse

Bag+Ba5+E14
Blas + 8¢
Ba34 * B5

abedef By34 tE35 tE2g

~ TREATMENTS OF EXPERIMENT PLANS ANL ALTASED

1
98
83
32

53
86
103
L]

121
26
43
76

77
46
i1

128

{OMBINATIONS OF LOWER ORDER PARAMETERS.

(1)
afg
beg
abef

cef
aceg
befg
abe

defg
ade
bd £
abdg

cdg
acdf
bede

Lo~

fg

B
1

Bz

B12+ 847+ 54

B3

B13+ 46+ Bs7

Ba3t Byst Bgy

B123+ f145 ¥ Bosst Bagy
+B8356 + 8257+ B157

B4

Big+ 836t B2y
834+ 835+ 817
B124+ By

Bag* Ba5+ R3g
8134 + Bg
234 * 85

abedefg Bypaq tB1s tBag+ By

the Yates order number of the treatment in a full factorial experiment, as in table VIT

1
226
211

52

181

86
103
136

121
154
171

76

205
46
31

256

8
4
(1} Ry
afgh By . :
begh hy o
abef Bi2+ Byy +Bag +85¢
cefh gq
aceg B13+B4p+ Byy+ Bag
befg Byq+ 845+ g7+ By
abeh 6123t 8By
defg B4
adeh Byst 835+ B27+ Bsp
bdfh Bag+ By5+ By 7+ Bgg
abdg B1a4+* By
cdgh Byst Bast+ Big ¥ Byg
acdf 2134 T B
bede Bagst Bg
abedefgh B1z34 +B15+ 826+ 637 *R4g



TABLE IX. - STARTING MODELS FOR SUBSET REGRESSION PROCEDURES

[The number i 1s the order number of the Yates estimate for a full factorial experiment.]

g=4, h=0
i
1 23 4 5 6 7 g 9 10 1 12 13 14 15 16
Y = By ¥y #Byxy #BypXy Xy gy By gmy Ry HhyygXy Frag¥iTaXy iy RraXi%g *Baa¥e% PrasXi¥a%y tRaamaRy PEaa%yXay *Rag¥o®a¥s Haau®Ta%a%,

g=3, h=1

i
L 2 3 4 5 5 7 B 5 10 11 12 19 20 17 18
¥om By HByxy HBouy By X, B Xy 4R gXyxy AR gRyxg HBy gk axg M x, 4By kX, 4B, wan, HEy 9 XX E, HEo XXy HBypaX XgXg Higxg *Bys% %5
g=6,h=12
1
1 2 3 4 5 6 7 8 9 10 11 12 34 33 17 ia
¥ o= By #Byxy HByxy By px k) HBoxy MRy gk Ry FBygaang HByg X Koxg Mk, HBpua K, HMau, Hhyp, M XpR, HBi g Xg +EgXg hgXg +B15% %5
g=7, h=3
i
1 2 3 4 5 6 7 B g 10 il 65 34 33 17 18
y = B[I +le1. +Bzx2 +|312x_1_x2 +ﬂ3x3 -I~B]_3xlx3 +823x2x3 +Bl2ﬂxlx2x3 +B£‘x4 +Bl4xl);4 +Bz4xzx4 +87x? +516xlx6 +B6x6 +Bsx5 +B_15:.1x5
g =8, h=i
i
1 2 3 4 5 § 7 129 9 10 1 65 34 1 17 18
= + + +
T = B ¥Byy Bk, ¥RypX ¥y FAgxy i g¥ Xy MBya%p%y Tg¥e M I U e T A A b 161X *Pee #5¥s Bis¥1%s



TABLE X. -~ COMPUTER PROGRAMS

!
!

Name oy % Gg Nga OQutput
MODEL 0 1.0 1.0 YMU(I,L,M) I = 1,IP
BILM(I,L,M) I = 1,IT
BIAS(I,L,M) I = 1,IP
POQLES Optional ERSQMX (L,M)
AVERSQ (L,M)
: POOLES Optional Optional | ERSQMX (1.,M)

AVERSQ (L ,M)
VESQMX (L ,M)
AVVESQ (L,M)




TABLE XI.

-~ STRATEGIES OF

AND

4]

Gp £
(66 COMBINATIONS)
U.p G-f 4’ U..P G’f in Gf
1.0 | 1.0 0.25 |0.25 0.005 | 0.005
.75 .10 .002
.50 .05 .001
.25 .025 .002 | .002
.10 .01 .001
.05 .005 .001{ .001
.025 .002
.01 .001
.005 10 1 .10
.002 .05
.001 .025
751 .75 .01
.50 ..005
.25 .002
.10 .001
.05 .05 | .05
.025 .025
.01 .01
.005 .005
.002 .002
.001 .001
50| .50 .025{ .025
.25 .01
.10 .005
.05 .002
.025 .001
- .01 01 | .01
.005 .005
.002 .002
.001 001




TABLE XIL, — SUMMARY OF POPULATION CHARACTERISTICS AS
DETERMINED WITH PROGRAM MODEL
[Values of i are Yates order number of treatment

at which maximum absolute valuwes of mean and
bias ocecurred.]

T B
1 32

l“i!,mlmax i lbiaslmax L |“if.m{max i |bia‘9‘max i
0 3.260 16 0.0 - 104.3 16 0.0 -
1 3.262 16 0.0 - 104 .4 la 0.0 -
2 3.263 16 0.0 - 104.4 16 0.0 -
4 4,040 3 0.0 - 129.3 3 0.0 -
8 8.040 3 0.0 - 257.3 3 G.0 -
16 | 16.04 3 0.0 513.3 3 0.0 -
0 3.540 32 0.0 - 113.3 32 0.0 -
1 3.541 32 4840 | 3 113.3 32 15.49 3
2 3.541 32 .9680 3 113.3 32 30,98 3
4 3.4d00 3 1.936 3 121.6 3 61.95 3
B 7.800 3 3.872 3 249.6 3] 123.9 3
16 | 15.80 3 7.744 3 505.6 3 247.8 3
a 4.030 64 0.0 - 129.0 64 .0 -
1 4.030 B4 L6733 | 3 12%.0 64 21,55 3
2 4,030 G4 1.347 3 129.0 64 43.09 3
4 4,030, 64 2.693 3 129.0 64 B86.1% 3
B 7.410 3 5.387 3 237.1 3| 172.4 3
16| 15.41 3| 10.77 3 493.1 3| 344.7 3
0 4.390 128 g.0 -~ 140.5 128 0.0 -
1 4.390 128 .8328 | 3 140.5 128 26.63 3
2 4,390 izg 1.666 3 140.5 128 53.30 3
4 4.390 128 3,331 3 140.5 128 | 106.6 3
8 1.110 3 6.662 3 227.5 3] 213.2 3
16 15.11 3 13,32 3 483.5 3] 426.4 3
0 4,740 256 0.0 - 151.7 256 0.0 -
1 4, 740 256 L9191 | 3 151.7 256 29.41 3
4 5.740 - | 256 1.838 3 151.7 256 58.82 3
[ 4,740 56 3.676 3 151.7 256 | 117.6 3
B 6.780 3 7.352 3 217.0 3| 235.3 3
161 14.78 1| 14.70 3 473.0 31 470.6 3
5k=-1,l,—l,—1,... k=1, . . .,8

B
2
D e Ll
¥ “1i/2
-8, + + k=l Tk (26)
Fiem T % WeEpe * T
|




TABLE XIII. - OPTIMAL STRATEGIES FOR GIVEN @

AND

T

{a} T = 0.0; Gk =~1, 1, -1, -1, 3 n, = 1000
8 g 4 5 6 7 8
n 0 1 2 3 4
125 ay |1-00 £.00 1.00 1.00 1,00
a | -001 .001 .001 .001 001
SRy | 1484 .1656 ,2086 L2650 L2843
VE ) o | 0302 L0357 -0467 .0560 0660
.25 o, |1.00 1.00 .002 .25 .50
ap | -001 .001 .002 .ol .005
&2 | 3855 L4700 L6411 L7564 .8794
V(&) ey | .0918 .1133 .1577 .3418 L9264
.5 op | +75 .75 .75 1,00 21,00
ag | .05 .05 .50 .25 1.00
22 . ) 9e23 | 1.019 L9z | 1091 |} 1.117
V@D 1616 | 1.eas [ o2.ses | 20551 | 20584
1.0 ap | 75 .75 1.00 1.00 1.00
o [ .10 .10 .25 .25 .50
el | .9798 | 1.033 1.100 1.114 1.113
VED L, [1.973 2,054 2.636 2.461 2.612
2.0 ag | .75 .75 1.00 1.00 .75
ap | .10 .10 .25 .25 .75
=2
© Cmax | .9559 9912 1.057 1.108 1.113
V(e2) .y | 1859 2.128 2.450 2.482 2.53%
4.0 a, | .10 .75 .75, .50 1.00
wp | .10 .10 .10 .10 .25
el | 7964 .9573 9769 | 1.056 1.069
VB ) oy |1.6407 2.006 2.094 2,446 2.542
!
8.0 ag | .025 .10 .10 .50 .25
ag | .025 .10 .10 .05 .25
.| 4786 L7731 L8800 9458 | 1,016
V(@) e | L7771 | 1.458 1.655 2.060 2.444
16.0 ap | 005 .01 .025 .05 .50
wp | 005 .01 .025 .05 .05
B2 L3647 L4337 L5642 L7135 L9346
Ve [ 2322 4721 7246 | 1.356 2,002
32.0 ap | 005 .01 .on1 .005 .025
wg p .05 .002 .001 .002 025
o | <3447 .4177 .5038 L5745 6793
VEY L, | 2322 L3717 L4920 .6628 9404
amP w 0. TIn all other cases, m = 1.




TABLE XIII, - Continued, OPTIMAL STRATEGIES FOR GIVEN & AND T

(b) T = 1.0, 6](. = 1,1, -1, -4, . . .y m T 1000
El g 4 5 5} 7 8
h 0 1 2 3 4
0.123 Up 1,00 1.00 1.00 1,00 1.00
wp [ 001 .001 .00L ,001 .001
[ (R YY) .1624 .2049 .2427 .2828
V(EY) pax .0310 .0358 L0463 .0552 L0649
.25 op | 002 .02 .002 .25 .25
ag ff 002 .002 001 .001 .005
=2
enax .3883 46232 ,6257 L7494 L8850
Vel pax || 1184 L1139 .1566 L4531 .8731
.5 w73 .50 .75 1.00 1.00
v .05 .25 .25 .25
Toax| 9296 .9879 1.078 1.088 1.149
V(E ) gax | 1-617 1.671 2,511 2.544 | 2.499
1.0 op| .75 .75 .75 .15 .75
g .10 .10 .10 .10 .10
=2
e2.x| 1.003 1.076 1.218 1.314 1.547
V(ED pax | 2-224 2.196 2.892 3.984 7.046
2.0 ap| 1.00 .25 .25 .25 .50
agl .25 .25 .10 .25 .05
Thay | 1.068 1.501 2.188 2,810 | 3.106
V(EL gy | 2-268 3.832 17.83 22.51 19.91
4.0 N .10 .10 .25 .25
wgl .75 .05 .01 .01 .01
B2, 1.2 4.118 6.206 8.287 5.033
V(Ez)max} 2.267 | 23.59 189.6 160.0 379.3
8.0 oy || 21.00 .10 .025 .05 .10
ap || 1.00 .002 .002 .02 .005
ax |l 1.116 | 15.08 24.99 29.08 39.62
V(&) pax ‘ 2,282 |198.1 491.4x10 | 232.2x10 | 342.4
16.0 ap || 21.00 .025 005 1.00 .025
ag || 1.00 .002 .001 .025 .001
elax| 1.116 | 56.11 108.0 159.8 177.9
V(e pax | 2.282 | 257.9x10 160.4x107 | 934,110 | 305.4x103
|
32,0 ap || 21.00 1.00 21.00 1.00 005
sg| 1.00 .75 1.00 025 .01
2| 1.116 j236.4 462.8 681.0 842.0
V() pay || 2.282 |974.1 196.4x10 | 439.2x102| 258.8x10%
a

o, = 0. In all- aother caaes, L 1.




TABLE XITI. - Continued. OPTIMAL STRATEGIES FOR GIVEN & AND 1
(c) 1 = 2.0, ‘Sk =-1,1, -1, -1, +3 n, = 1000
B 4 5 6 7 8
0 1 2 3 4
0.125 thy 1,00 1.00 1.00 1.00 1.00
of .001 .001 .001 .01 .001
Blax .1473 .1629 .2012 L2403 L2814
V(E2) pax .0319 .0360 .0459 L0545 L0639
.25 @, .001 .005 .003 .25 .25
e .001 .005 .aos .001 .002
. L4037 L4643 (6146 L7412 .8586
V&) pax 0984 L1571 1646 L4785 6676
.5 ap .75 1.00 1.00 .50 .50
ag .05 .10 .10 .05 .10
&g L9009 .9760 1.150 1.257 1.412
VED) oy 1.978 1.998 3.018 2.859 3.550
1.0 o .75 .75 .75 .25 .75
af .10 .05 .05 .25 .0s
elax 1.015 1.556 2,035 2.542 2.726
V() nax 2.026 3.788 6.866 12.25 17.94
2.0 ay 1.00 .10 .25 1.00 .25
ag 1.00 .10 .025 .05 .025
2y 1.114 3.618 6.315 7.691 B8.787
V(&%) pax 2.294 | 26.72 51.36 143.6 210.8
4.0 i a1.00 .05 .10 .10 .10
g 1.00 .025 .005 .005 .01
52, 1116 | 12.27 22.64 26.16 32,25
V(E) pax 2.282 | 52.58 8084 135.5%10 | 371.1x10
8.0 o 100 .10 025 .05 .05
s 1.00 .005 .002 .001 .002
2. 1.116 | 47.84 100.4 105.9 144.8
Ve )y 2.282 | 501.8 369,510 | 292 9x102 | 503.2x102
16.0 ap 41,00 .10 025 .025 -.025
og 1.00 025 .001 .001 .01
g2, 1.115 | 192.9 391.2 488,5 714.9
V(E2) pax 2.282 | 984.2x10 | 117.8x108 | 473.3.10%] 587 3003
32.0 ap 21,00 .05 .005 1.00 .05
g 1.00 .05 .00l .025 .002
. 1.116 | 819.5 159.9%10 | 228.0x10 | 272.5x10
VER) Ly z.082 | 112.4x10% | 587.7x10% | 101,8x10%| 308.0x10%
amp =0, 1In all other casesa = 1.




TABLE XIIl. - Continued. OPTIMAL STRATEQIES FOR GIVEN 8 AND T
(d)y T = 0.0; 5k=1, 1,1, 1L, . .;nE=1000
4 5 6 ? 8
0 1 2 3 4
0.125 op 1,00 1.00 1.00 1.00 1.00
3 .D01 .00l L0001 .001 .001
82
Ty L1444 .1656 .2086 .2450 L2843
V(E) pay .0302 .0357 L0457 .0560 L0660
.25 o 1.00 1.00 .002 .25 .25
ag .01 .001 .002 .001 .02
2
i .3855 .4700 L6411 L7564 .8930
V(&) oy .0918 13 L1577 .3418 .6352
.5 a .73 .75 .75 1,00 31,00
Tt .03 05 .50 .25 1.00
a2 .9423 | 1.019 1.092 1.091 1.117
V(&%) may 1.616 1.645 2,545 .552 2.584
1.0 o .73 .75 1.00 1.00 1.00
dg .10 .10 .25 .25 .50
2 9798 | 1.033 1.100 1.114 1.113
V(E2) 1.973 2.054 2.436 2,461 2.612
2.0 % .75 .75 1.00 1.00 .75
g .19 .10 .25 .23 .75
Fax .9559 9912 | 1,057 1.108 1.113
V() pay 1.859 2,128 | 2.450 2.482 2.5
4.0 ap .19 .75 .75 .50 1.00
ap .10 .10 .10 .10 .25
2. . 7964 .9573 9769 | 1.056 1,069
VE2) nay 1.407 2.006 2,094 2.446 2.542
8.0 ap .025 .10 .10 .50 .25
wg .025 10 .10 .05 .25
el . L4786 7731 .B800 .9458 | 1.016
VED) Lo L7771 | 1.438 1.655 2,060 2,444
16.0 o -005 .01 .025 .05 .50
g .005 .01 025 .05 .05
2, L3447 L4337 .5642 L7135 ,9346
V(&) gax L2322 L4721 L7246 | 1.356 2,002
2.0 ap .05 .01 .001 .005 .025
g .005 .002 .001 .002 L025
x L3447 4177 .5038 .5745 .6793
V(&) payx .2322 L3717 L4920 .6628 9404
fn, = 0., In all other cases =1.
B p




TABLE XTII. - Continued, OPFTIMAL STRATEGIES FOR GIVEN 8 AND 1
(e} v = 1.0; :Sk=1, i, 1,1, . .;neil[)OD
8 4 5 & 7 8
a 1 2 3 4
0.125 oy L.00 1.00 0.001 0.001 0.001
af 001 .001 .o01 .001 001
22 .2195 L2515 .3106 .3580 4078
VL ) g L0460 .0538 0684 .0802 L0925
.25 ay .75 .25 .50, .75 .75
wg .001 .001 .025 .05 .05
T2ax .6803 L7942 .9589 .9926 1.033
2
VED oy .2085 L3667 1.541 1.648 1.760
.5 o .75 1.00 1.00 1.00 1.00
oy .10 .25 .25 .25 .25
. 1.039 1.076 1.100 1.110 1.118
V(@) nax 1.944 2.273 | 2,450 2.413 2.466
1.0 up 1.00 1.00 1.00 1.00 1.00
g .25 .25 .25 .25 .25
Cr. 1.060 | 1.124 1.189 1.192 1.247
VE2) pax 2.037 2,394 2,620 2.709 3.541
2.0 oy 1.00 1.00 1,00 1.00 1.00
e .25 .25 .25 .25 .25
32
LI 1.061 1.403 1.641 1.662 1,873
VE ) gy 2.096 | 3.760 5.096 5.061 5.615
4.0 o 1.00 1.00 1.00 1.00 1.00
ar .50 .25 .25 .25 .25
&2
o2 x 1.090 2.401 3.180 3.278 4.327
V() pax 2.332 8.209 11.79 12.82 19,62
8.0 ap 1,00 .75 .75 .75 .75
af 1.00 .50 .50 .50 .25
Loy 1.116 6,286 8.975 9.780 11.11
VED) Loy 2,282 | 64.48 101.4 94.77 143.1
16.0 g 23.00 1.00 1.00 1.00 1.00
of 1.00 .75 75 .75 .75
L 1.6 | 1778 28.64 35.43 45,40
VE) pay 2.282 | 150.5 369.1 478.5x10 | 451.9
32.0 ap 21,00 1.00 1,00 1.00 1.00
af 1.00 1.00 1.00 1.00 .75
2. 1.116 | 107.9 176.0 202.3 169.5
V(E2) pay 2,282 | 763.0 242.3%10 | 350.7x10 | 262,8x10
amp = 0. In all other cases 1y, = 1.




TABLE XIIL. - Concluded. OPTIMAL STRATEGIES FOR GIVEN 8 AND 1

() 1=2.0; 6 ~1,1,1,1,1,...;n, = 1000
5 4 5 6 7 8
0 1 2 3 4
0.125 ay 0,002 0.001 1.00 1.00 1.00
ag .01 .01 1 o001 .001 .001
Ehax .3188 L3631 L4398 4988 -5592
V(&) ax L0705 L0814 L1002 L1148 .1298
.25 ap .50 1.00 .75 .75 1.00
ag .025 .10 .10 .10 .25
Ehan .9223 .9629 | 1.018 1.030 1.089
V(E2) pax 1.381 1.840 2,109 2.150 2,448
.5 L 1.00 1.00 1.00 .75 1.00
af .25 .25 .25 .25 .25
e 1.048 1.132 1.191 1.220 1.215
v(aly 2.080 2.382 2.594 2.823 2.958
max
1.0 up 1.00 1.00 1,00 1.00 1.00
ag .25 .25 .25 .25 257
2oy 1,059 1.414 1.669 1.716 1.842
VEL ) oy 2.215 3.851 5.150 5.152 5.435




TABLE XIV, - VALUES OF g AND 6 AT WHICH STATED VALUES

QOF u.P AND af WERE OPTIMAL

@) 1 = 0.0, ék =-1,1, ~1, -1, . . ,; also 6k -=1,1,1,1, .

op *f
1.00 o0.75 | ¢.50 |o.25 | 010 |o.05 fo.025 | o.01 ) ©.005 |0.002 { ¢.001
2),00 | 8,0.5
1.00 dg,1.0] 6,1.0 a4 .0.125
6,2.0 4,0,25
7,0.5 5,0.125
7,1.0 5,0.25
7,2.0 6,0.125
B,4.0 7,0.125
8,0.125
.75 8,2.0| 6,0.5 b41.0]4,0.5
4,2,0]5,0.5
5,1.0
5,2.0
5,4,0
6,4.0
.50 7,4.0]7,8.0 B,0.25
8,16.0
.25 8,8.0 7,0.25
.10 4,4.0
5,8.0
6,8.0
.05 7,16.0
.025 4,80
6,16.0
8,32.0
.01 5,16.0 5,32.0
.005 4,16,0 | 7,32.,0
€4,32.0
002 6,0.25
001 . 6,32.0

A%ee table XV{a).
Poee table Xvib).
“See table XV{c).
dSee table XV(d).




TABLE XIV. =~ Concluded. VALUES OF g AND €6 AT WHICH STATED

VALUES OF up AND uf WERE OPTIMAL
(b) T=1.0; § =1, 1,1, 1, .. .;n, = 1000
GP U‘E
1.00 0.75 | 0.50 | 0.25 |o.10 | 0.05 |a.025 |0.01 |0.005f 0.002] o0.001
21.00 4,8.0
4,16.0
84,32.0
i.00 | s,32.0(5,16.0|4,4.0 | fa,1.0 €4,0,125
6,32.0 | 6,16.0 [ 8,16.0 | 4,2.0 5,0.125
7,32.0|7,16.0 5,0.5
8,32.0 5,1.0
5,2.0
5,4.0
6,0.5
6,1.0
6,2.0
6,4.0
7,0.5
7,1.0
7,2.0
7,4.0
8,0.5
§,1.0
8,2.0
8,4.0
.75 s,8.0 | 8,8.0)4,0.5)7,0.25 4,0,25
6,8.0 8,0.25
7,8.0
.50 6,0.25
.25 5,0.25
.001 6,0.125
7,0.125
Mg 0.125

See table XV(e).
See table XV(f).
Bsee table XV(g).
see table XV(h).




TABLE XV, - EFFECT OF u.p AND ag ON MEAN SQUARED ERROR AND ON VARIANCE OF MEAN SQUARED ERROR
(a) g =4; h=0; 8 =0.125; 1 =0.0; \Sk =<1, 1, -1, -1, and Gk =1, 1,1, 1; n, = 1900
rlp E!f
1.00 |0.75 [o.50 | o.25 | 0.0 | o.05 Jo.025 | 0.0t [o,005 [o0.002 ]0.001
a1.00 | &L, 1.136
V(E2) pay | 2.282
100 | e, 1.116 [ 1.112] 1.203 {1.043 |0.8372 {06010 |0.4108 {0.2738 | 0.2190 | 0.1922
v@2) . | 2.275 | 2.204] 22790 2.091 | 1.599 [1.155 | L6710 .e263| 2255 L1681 .0302
5 | 2ax 1.091 | 1.085 | 1.050 |Tol9391j| .7ars | .s751| .3835[ 3059 | .2525] .1%02
VE) g 2.246| 2.251 2.173 | 1.881 |1.530 |1.105 | .6344| 4867 | .2804] .1860
N B 1.020| 9840 | .9194| .s2so| .esa3| .5157| .s000| .3295| .2487
V) pay 2,238 2,162 [ 1.932 j1.653 |[1.323 | .9057| .p548| .4335| .3008
25 | @y 7182} .6618| .6216| .se10 | .ae93| .3887 | .3360 | .2646
V(E2) pax 1.546 §1.467 [1.364 [1.146 | .9791| .7019 | .s091| .3498
0 | 2, 4100 L3867 | L3730 .3429) L3169 | L2794 .2284
V(E2) pax 8122 | .7263 | .eso4 | .s7i0| .s168 | .4220( .2612
05 | &y 2906 | .2815 | .2602( 2472 .2385| .2077
V&) pay 4488 | .4109 [ .3647) .3364 | .2905| .2180
025 &5y 2230 | .2135| L2089 | L2037| .1772
V(B pax 2712 | L2530 L2384 ) L2547 L1975
o1 | &, .1855] 1827 .1823| .1629
V(&) pax L6131 L1413 (1448 1267
.005| &8, ‘ .1637 | .1634| .1555
V(&) pax 1135 .1057| .1209
o02] &2, L1561 1504
V(E®) e .1038 | .1143
001 2,4 1465
V(e ) pan .0325
amp = 0. In 211 other cases my = 1.




TABLE XV.

— Continued.

EFFECT OF up

AND

f

ERROR AND ON VARIANCE OF MEAN SQUARED ERROR

ON MEAN SQUARED

(b} 6k=-1, 1, -1, =1, . . .3 6k=1, 1, 1, 1, . . .3 g=#%; h=20; ne=1000; #=1.0; T =20.0
BP %
1.00 |o.75 lo.so Jo.zs | 0.0 |owos | o.025 | 0.on | 0.005 | 0.002 | 0,001
a a2
1.00 =2, 1.116
V(e2)gax | 2.282
1.00  &lay 1.115 1,126 | 1.109 | 1,042 | 1.0%0 | 1.719 | 2.829 | 3.987 | 4.557 | 4.792 | 5.184
V(32 gay | 2.282 | 2,305 | 2,200 | 2,138 | 2.345 | 4.149 | 5.757 | 5.068 | 3.617 | 2.812 | 1.306
75 Fhgy 1.101| 1.088| 1.044 1.181 | 1.804 | 2.846 | 3.512 | 4.018 | 4,555
V(ED) gy 3.244 | 2.263] 2.214 | 1.973 | 2.574 | 4.404 | 5.831 | 5.659 | 4.860 | 3.597
.50 EEax 1.034 | 1.053 | 1.100 | 1.150 | 1.410 | 2.129 [ 2.684 | 3.224 | 3.815
V(82) gax 2.191) 2.167 | 2.160 | 2.447 | 3.448 | 5.075 | 5.795 | 1.254 | 5.321
.25 B2 1.206 | 1.430 | 1.643 | 1.858 | 2.213 | 2.619 | 3.007 | 3.532
V(&2 ) pax 2.470 | 3.247 | 3.868 | 4,375 | 5.138 | 5.704 | 1.212 | 5.648
10 gy 2,194 | 2.585 | 2.896 | 3.228 | 3.524 | 3.768 | 4.168
V(&) pax 4.994 | 5.577 | 5.664 | 5.822 | 5.718 | 5.459 | 4.691
05 By 3.072 | 3.402 | 3.766 | 3,993 | 4.219 | 4.523
V(E) gax 5.879 | s5.618 | 5,311 | 5.002 | 4.551 | 3,704
025 oy 3.834 | 4,203 | 4.425 | 4.617| 4.813
V(&) pax 5.203 | 4.458 | 4.003 | 3.504 | 2.818
32
01 B, 4,448 | 4.670 | 4.833 | 4.968
v{=?) 3.863 | 3.289 | 2.748 | 2.248
2
005 Bh.o 4,769 | 4.929 | 5.025
V(2 ) pax 2,943 2,382 | 2.003
002 B2, 4.968 | 5.065
¥ (&) pax 2.220 | 1.831
2
001 B 5.086
L{C . 1.747
amp = 0. In all other cases, m, = 1.




TABLE XV. - Continued.,

EFFECT OF

o

AND ag ON MEAN SQUARED ERROR AND ON VAREANCE OF MEAN SQUARED ERROR

() g=4ih=0;9=32.0; 1=00;8 =-1, 1, -1, -1; and & =1, 1, 1, 1; n, = 1000

P *£
1.00 |0.75 0.50 0.25 0.10 0.05 0.025 00,01 0.005 0.002 0.001
21,00 Blay 1.116
V(E2) pax |2.282
1.00  ERax 1,115 1.114 1.099 1.024 0.8100 | 0.6388 | D.6226 8.046 1.222:10% | 5.293x207 | 5.2310103
Ve gay | 2277} 2.297 2.284 2,127 1.463 1.126 6.907 1.478x103 | 1.967x105 | 1,468x106 | 1.397x103
75wl 1.096 1.080 031 ] Coeerel| L7814 L6200 1.413 2.238x10 | 1.232x102 | 3.594x103
V(&) pax 2.250 2.247 2,233 1.893 1.510 1.040 4.169%10 | 1.430x10% | 2,252x105 { 5.890x105
500 B 1.025 1.001 L9076 .8203 L7104 .6322 3.494 1.907x10 | 2.265x103
V(ED) nax 2.200 2.200 1.921 1.606 1.201 5.160 5.497x102 | 1.367x20%4 | 6.723x1208
.25 @2ay .8417 .7824 .7362 6677 L5928 L5934 1.140 1.125%103
VED pax 1.664 1.560 1.386 1.152 .B564 5,120 3.297x10 | 4.622x10%
g0 &2, 5849 .5632 .5361 .5130 L4608 AL74 | 6.346x102
V(&) yax 1.068 .8626 .7692 6844 .5691 L4403 2,085x106
05 Blay .4589 L4448 L4312 .4086 L3901 2,514x10%
V(e?) .5630 .5233 4554 L6123 .3769 1.252x106
025 &y L4032 .3974 . 3815 .3739 1.102x102
V@) nax L6001 3854 .3591 3335 | 5.630%10°
01 By .3643 .3552 .3535 3,698x10
VED) yax .2051 .2784 L2780 1.909%103
005 B2 L3447 L3450 1.078x10
VED) pax .2322 .2329 | 5.4B4x104
002 To, L3458 1,078x10
V(&) g 2321 | 5.484x10%
001 ey L3453
V@& ) pax .2024

a

m.Pnﬂ.

In all other cases My = 1,




@ s, = -1, 1, -1, 4, -1, L, -1,

TAELE XV. - Continued.

EFFECL OF up

AND

“f

ERROR AND ON VARIANCE OF MEAN SQUARED ERROR

-1;

0N MEAN SQUARED

5,=1,1,1,1,1,1, 1, 1

k

g=8;h=4;ne=1000;6=1;1=0

up oF
100 Jo.75 |o0.50 | o.25 | ¢.10 | 0.05 | 0.025] 0.01 | 0.005) 0.002 0,001
aj,00 e, 1.117
V(&) Ly | 2588
1.00 2 va2o | 1aen |l 1.e2 | 2303 | eoma] .14 {1136 112,49 13.26 14.07
max
V(&) gy | 2,589 | 2.574 | 2.612 | 2.611 | 13.80 |3L.61 | 1.7%9 30.34 | 2.300 | 13,54 | 3,550
.75 el Loass| 1150 | 1.17s |TLae0y| 2.714 | 4.936 | 8.016| 10.01 | 11,51 |12.77
mAaX L=
v(E?) 2.706 | 2.620 | 2.701 | 6.330 [ 16.91 |32.86 |39.31 j35.27 | 26.19 )15.95
max
50 B, 1633 | 1507 | 1.872) 2.451| 3.760 | 6.007| 7.679| 5.420 [ 13.04
V@E2) oy 5.358 | 7.369 [11.00 |15.79 | 26.71 |36.79 | 39.50 |35.24 127.99
25 Shay 3.991 | 4.148| 4.702] 5.364 | 6.646[ 7.854| 9.166 |10.68
V(&%) nax 92.55 |28.45 |32.22 | 35.60 |38.93 | 39.72 36,22 29.84
A0 Bhax g.071| s.800| 9.5| 9.867( 10.30 | 10.91 |1L.8%
V(&) pax 39.50 | 39.41 |38.78 |37.36 | 35.46 | 31.02 |23.96
05 Boax 10.79 11.40 |11.85 | 11.98 [ 12.26 {12.82
VE s 31.07 | 28.03 |25.66 | 26.68 | 22,11 |16.90
025 Blax 12.42 [12.75 § 12.85 13,01 |13.3
V&) pay 20.63 |18.08 | 17.05 | 15.46 |12.03
01 Ty 13.47 | 13,53 | 13.64 | 13.74
FE) pax 10,47 | 9.832] 8.793| 7.712
.005 Bagy 13.71 | 13.81 | 13.86
VED max 7.720} 6,841 6.289
002 e2gy 13.94 | 13.98
¥ (&2 pax 5.236 | 4.790
01 B2 14.04
V(& max 3.867

other cases oy = 1.




TABLE XV. - Continued.

(e) g=64,h=0, 8 =0,125; t=1.0; %

EFFECT OF oup

AND

a

£

ERROR AND ON VARIANCE OF MEAN SQUARED ERROR

OH MEAN SQUARED

=1,1, 1, 1; a, = 1000

k
o, *g
1.00 [ e.75 |o.s¢ |o.25 | 0.1 .05 |o.025 Je.or |o.005 |o0.002 |o0.001
iy
41.00  efax 1.116
V(&%) py |2.282
100 el 1.135| 1.112 [ 1.201 [ 1.045 | 0.8551 |0.6207 | 0.4286 | 0.3335 | 0.2520 | 0.2466
vy o, [2.291] 2,311 | 2.289 [ 2,220 [ 1.653 |1.168 | .8042 .4406 | .2171| .1405| .0460
75 Bax 1.089 [ 1,084 [ 1,056 [[ .9501)f .7633( .5991[ .4371[ .3267| .2927( .2520
V(&) pax 2.275| 2.275) 2,201 | 1.807 |1.406 |1.125 } .e75¢ | .4127| .2603] .1137
50 By 1,029 ,9936] .9239] .sazz| .eeeal| .s251 3820 3454 2889
VED 2.215) 2,142 | 1,842 |1.690 [1.358 | L9613} .7247| .3803| 2412
25 Ty .7585| 6967 | .6554 | .6003| .4966| .3983| .3615]| .3060
V(E2) pax 1.608 | 1.542 |1.408 |1.180 | .9287) .B147| .4493| .3128
ST 4246 | L4067 | 3899 .3835| .33n2} .3153] .z808
V(=) pay 8632 | .8405| .7450§ ,e425) [5259| ,3318| .2668
.05 B ; 32761 L3168 .3056| .2047| 2881 .2595
V() pax 5204 .5183] 48023 .3888| .2646( 2040
025 &2 .2847| .2726| .2685| .2618| 2441
VE ) paxe .2851) .2503] .24ma| .2127] 1351
01 B2, 2378 L2384 L2382 L2302
V(&) gax .1474| L1423 1385 .1073
—
.005 L, .2353| 2357 L2302
V(22 pax 1404 .1369] .1061
.00z 82, .2229| .219%
V&) L0541 .0460
00 ahy
Vi{E) pax L0460
E: )

mF-O.

In all other cases my = 1.



TABLE XV. - Continued. EFFECT OF op AND g ON MEAN SQUARED EEROR AND ON VARIANCE OF MEAN SQUARED ERROR

(E) Gk=l,1,l,l;g=&;ﬁ=l._ﬂ:T=1.0;h=0;ne=1000

g *f
1.00 | 0.75 0.50 0.25 0.10 0.05 0.025 0.01 0.005 0.002 0.001
31,00 Btay 1,116
V(E2) gax | 2-282
1.00 e, 1.117} 1.112 1.095 1.060 1.401 2.862 4.901 7.376 8.676 9.214 9.952
V(@) gay | 2.307 [ 2,327 2.202 2.037 4,132 1.269%10 | 1.923x10 | 1.726x10 | 1.137x10 | 8.197 2.482
5 Blay 1.098 1.089 1.066 | (1138 | 1724 | 3.002 5.116 6.532 7.436 8,507
V(E2) pax 2.342 2,245 2.031 2.508 6.358 1.434x10 | 2.007x10 | 1.946x10 | 1.707x10 | 1.202x10
30 BRa. 1.148 1.193 1.235 1.455 2.148 3.579 4.839 5.938 7.171
V(E2) gy 2,553 2.750 3.054 4,492 - | 9.166 1.629x10 |-1.948x10 | 1,963x10 | 1,683x10
25 T 1.786 2.246 2.644 3.022 3.759 4.602 5.436 6.648
VG pax 5.767 8.531 1.116x10 | 1.303%10 | 1.646x10 | 1.874x10 | 1.949x10 | 1,860x10
L1000 82y 3.725 4,368 4,949 5.691 6.209 6.867 7,771
V&) g 1.515%10 | 1.723%10 | 1.823x10 | 1.943x10 | 1.925x10 { 1.843x10 | 1.353x10
05 Thax 5.477 6.132 6.969 7.409 7.871 8.490
V(T gax 1.835x10 | 1.795%10 | 1.725x10 | 1.624x10 [ 14.94x10 | 1.222x10
025 22, - 6.984 7.796 8.171 8.554 8.968
VE) g : 1.696x10 | 1.463x10 | 1.304x10[ 1.139x101 9.240
01 =2ay 8.454 8.832 9.167 9.378
&) pax 1.200:10 | 9.984 7.970 5.669
005 B2, ) : 9.048 9.345 5.534
V(E) pay 8.820 6.875 5.564
.002 &% 9.541 9.686
VE Y gy 5,597 4,530
001 F, 9,752
VIED) o . 4.114

m, = 0. Ia all other cases my = 1.




TABLE XV. - Continued. EFFECT OF

] AND o
P

(g)g-!r,h=0;8==32.0;1:=l.0; Gk=1, l,l,l;nE=1000

£ ON MEAN SQUARED ERROR AND ON VARLANCE OF MEAN SQUARED ERROR

op Af
1.00 0.75 a.50 0,25 0.10 0.05 0,025 0.01 0.005 0.002 0.001
21,00 efay 1.114]
V(E2)pay | 2.282
1.00 83y 1.894 | 9.625 41.81 214.9 462.3 115,610 | 505.6%10 | 985.5x10 {100,8x102 } 101.0x102 101.1x102
V(&) oy | 5,341 178.3 121.8x10 | 910.6x10 | 302 .4x102 | 408.0x103| 100.9x10° 173.8x10% | 253.3x103 | 736.3x102 | 284.4x10
75 @ay 89.73 | 134.1 197.1  |l284.0_ )| 384.4 804.5 253,110 | 279.2x10 | 293.1x10 |307.6x10
V(E) pax 101.9%10% | 135.2x102 | 100.8x102 | 595.3<10 | 490.3x10 | 135.2%10% | 158.5x10° 173.3%105 | 170.4x109 {167.4x105
50 E2ay 251.0 272.3 290.1 303,2 334.8 728.4 398.2 104.7x10 | 108.0x10
V(e pax 978.7%10 | 597.9x10 | 201.7%10 | 262.8x10 | 387.3x102 | 161.6x10% | 377.5x10% 392.2x104 | 406.9x10%
25 iy 298.1 298.4 299.3 309.2 528.8 642.1 667.9 679.8
V(EL) pax 104.6%10 | 905.% 632.5 340.3%10 | 261.4x102 | 108,0x103 | 294.8x107 | 448.3x103
L0 wlax 300.2 300.2 309.4 527.7 628,1 636.5 642.4
VED) pax 458.3 441,7 336,300 | 249.5x102 | 346.2x10 | 124.6x10% | 885.5x10%
.05 360.4 309.4 527.7 627.1 633.0 633.0
V{E) pax 370.0 336,3%10 | 249.5710% | 258.4010 | 644.4 644 .4
.025 B 3094 527.7 627.1 636.0 662.0
V(&%) pax 336.3x10 | 249.5x102 | 258.4x30 | 377.0%10 | 298.0x107
01 @2 527.7 627.1 746.6 132.4%10
V(& e 249.5%102 | 258.4x10 | 105.8x103 | 237.8x103
005 €2y 627,1 793,7 161.8%10
V(& pax 258.4x10 | 242.7x103 | 495.6x10°
002 BRax 215.6x10 | 295.4%10
¥ gax 121,4x10% | 974.7x10%
001 gy 9g2,3%10
V& nax 262.3x10%
am1J = 0. In all other cases m,; = 1.




TABLE XV. - Continued,

EFFECT OF ap AND

Ge ON MEAN SQUARED ERROK AND ON VARLIANCE OF MEAN SQUARED ERROR

(g)gﬂd;h=0;6=32.0;1-1.0; ﬁk=1, 1, 1, 13 ne-=1000

%p “f
1.00 0.75 0.50 0.25 0.10 0.05 0.025 0.01 0.005 0.002 0,001
23,00 eax 1.116 '
V(E2) oy | 2.282
1.00  eax 1,804 0 9.625 41.81 214.9 462.3 115.6x10 | 505.6x10 | 985.5x10 | 100.8x102 | 101,0x102 | 101.1x10
V(&2 a1 5.341 | 178.3 121.8%10 | 010.6x10 | 302.4x102 | 408.0%103] 100.9x10% | 173.8x10% 253.32103 | 736.3x102 [ 284,410
5 8y 89.73 | 134.1 197.1 |lz84.0_ || 386.4 804.5 253.1%10 [ 279.2x10 { 293.1x10 [307.6x10
V(&) pax 101.9%102 | 135.2x102 | 100.8x202 | 595,3x10 | 490.3x20 | 135.2x10% | 158.9x10° 173.3x105 | 170.4x10% | 1674105
.50 BRay 253.0 272.3 290.1 303.2 334.8 728.4 998.2 104.7x10 | 108.0x10
V(E2) pax a7a.7%10 | 597.9x10 | 201.7410 | 242.9%10 | 387.3%10% | 181.6x10% | 377.5x104 392.2x10% | 406,9x10%
25 By 298.1 298.4 299.3 309.2 528.8 §42.1 667.9 679.8
V(@2) pax 104.6%10 | 905.9 632.5 340.3%10 | 261.4%102 | 108.0%10% | 294.8x10% | 448, 3103
0 Fay 002 [-300.2 309 .4 527,7 628.1 636.3 642.4
VE Y gan 458.,3 441.,7 136.3%10 | 249.5%10% | 346.2:10 | 124.5%107 | 885.5x107
.05 B2,y 300.4 309.4 527.7 627.1 633.0 633.0
V(E2) pax 370.0 336.3%10 | 249.5%10% | 258.4%10 | 644.4 644.4
025 Tlay 309.4 527.7 627.1 636.0 662.0
V(&) pax 336.3%10 | 249.5x102 | 258.4x10 | 377,0x10 | 296.0x102
.01 @2 527.7 627.1 746.6 132.4x10
V(&) gax 249.5x102 | 258.4x10 | 105.8%103 | 237.8x103
005 3, 627.1 793.7 161,810
V@& pay 258.4%10 | 142,7x103 | 495.6x102
002 Thax 215,610 | 299.4x10
VE) pax (121,6x10° | 974.7%10%
001 Elay 982.3%10
VD) pax 262, 35104
amp=0. In all other cases M, = 1.




TABLE XV. - Goncluded,

EFFECT OF

a
P

AND Op

ERROR AND ON VARIANCE OF MEAN SQUARED ERROR

ON MEAN SQUARED

(h) g = 8 ho=4; 8 =0.125 T=2.0; 8 =1,1,1,1, .. .;mn, =1000
oy of
1.00 1 0.75 Jo.50 lo.25 o0 |o.05 |o0.025 j0.01 |0.005 |0.002 }0.001
81,00 emax 1.121
V(e ) pay | 2-569
1.00 oy 1122 1,122 }2.113 ] 1.068 | 0.9152] 0.7405 ) 0.5716 | 0,4900 | 0.4452 | 0.4223 | 0.4081
wa2y | 2.559) 2.568 | 2.551| 2,400 | 2,003 | 1.579 1 0782 | 7405} L4034} 3373 | 0924
75 &gy 1.108]1.105 | 1.084 || .9826) .B524| .6830 | .5SBL| 4771} L4476 .4295
V(ED) pax 2.556 | 2.517 ) 2.463 | 2.160 | 1.752 [1.262 | .8933| .5934| .4207| .1618
.50 By 1.062 | 1.028 | .9848)| .8971| .7506) .6397| .5226) .4836| .4533
VED oy 2.443]2.338 | 2.161 | 1.971 |1.508 | 1.208 | .8133| .5711| .3190
25 Blay .118] .78ol| .7508| .ep3z| .e27z| .5488| .5007) .4707
V(&) pax 1.091 | 1.886 | 1.796 | 1.433 | 1.221 | .9575| .7156| .4482
I - L5684 [ .5603| .5262| .5105| .4826| .4598| .4491
V(ED) pax 1.150 | 1.082 | 1.031 | 1.058 | .8848| .6BO4| .4114
05 Ehax a745| Lesea| Las17| Lss2s| Le278) L4273
V@) gy ,7093| .6980) .6B62| .5831F .5700) .29BL
L025 By as22| Lasao| .aszs| La327) La26s
V(E2) o 4933 La967] La475) L4851 L2503
2
01 w2y 4227 bza2| La207) Lerss
VE ) pan .3530( .3454| .3384| 1419
005 34y 4160| .4158] L4137
LICT T L1957 L1965} 1302
002 Bhax L4091 4079
V(&) pax .1787) 0925
001 &2, L4073
V(@?) pax 0925
amp = 0. In all other cases m, = 1.




[ #7
1/

1 %
(@) wy > tdy (b z trp
woz 0 |ﬂi|>>|&z[
X% lidz 0
y-Eﬂ+ﬁlw1 )’=60+61W1
y=y by ¥ =g + By tx) +xp)

Figure 1. ~ Principal components regression.
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START

SECTION 1. - DECLARATIONS, CONSTANTS, POPULATION, MEANS AND
STRATEGY. READ: g; 9[; t=1,..., lg: g-h: T m=1, ..., M2
'-llk; k=1, ..., G Wk; k=1, ...,0- ne

COMPUTE: A;, EQUA. (22); C;, EQUA. {23} ug , EQUA. (27)

g

DOES i=2 ?

N DOES - I?

YES

NO

50, - READ M. o, O

1

SECTION 2. - SIMULATIONS AND MODEL FITTING. GENERATE e,

!
NO
YES

COMPUTE Yo 1y, EQUA. (28)

——
' YES

[ FITEQUA. 9 BY YATES' METHOD. ]

SECTION 3. - CONSTRUCTION AND ORDERING OF MEAN SQUARES

|

{a) SECTIONS 1, 2, AND 3.
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ABSTRACT

The investigation consisted of Monte Carlo studies using population
models intended to represent response surface applications. Simulated
experiments were generated by adding pseudo random normally distributed
errors to population values to generate '"observations." Model equations
were fitted to the '"'observations" and the decision procedure was used to
delete terms. Comparison of values predicted by the reduced models with
the true population values enabled the identification of deletion strate-
gies that are approximately optimal for minimizing prediction errors.
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